skip to Main Content

University of Hawaii

Electrical Engineering

Economic Thinking of Communication Networks

Date: 2018-04-18           Add to Google Calendar
Time: 11:00am
Location: Holmes Hall 389
Speaker: Jianwei Huang

Abstract:

Today's communication networks are highly complex, carry heterogeneous traffic in diverse environments, and are often owned by multiple profit-making entities. To successfully maintain, optimize, and upgrade such large distributed networks, it is important to design new economic incentive mechanisms as well as develop new technologies. The market deregulation of the telecommunication industry in many counties makes such economic consideration even more urgent, as there are often conflicting goals between the regulators and the commercial operators.

We will first illustrate how economics can help us better understand the networking industry reality, predict user behaviors, envision new network services, and provide policy recommendations. Then we will focus on the case study of incentive mechanisms for user-provided networks (UPNs). UPNs is a new communication paradigm, which enables users to improve their communications experiences by exploiting the diverse communication needs and resources of other users. The success of UPNs, however, relies on carefully designed incentive mechanisms that effectively encourage users' voluntary participation and cooperations. We will introduce a new paradigm of cooperative video streaming based on the concept of UPN, where mobile users crowdsource their Internet connectivities and adaptively choose video downloading sequences and streaming qualities. We will introduce a multi-dimensional auction framework, which effectively incentivizes users to cooperate in a distributed fashion.

Bio:

Jianwei Huang is an IEEE Fellow, a Distinguished Lecturer of IEEE Communications Society, and a Clarivate Analytics Highly Cited Researcher in Computer Science. He is a Professor and Director of the Network Communications and Economics Lab (ncel.le.cuhk.edu.hk), in the Department of Information Engineering at the Chinese University of Hong Kong. He received his Ph.D. from Northwestern University in 2005, and worked as a Postdoc Research Associate at Princeton University during 2005-2007. His main research interests are in the area of network economics and games, with applications in wireless communications, networking, and smart grid.

Dr. Huang is the co-author of 9 Best Paper Awards, including IEEE Marconi Prize Paper in Wireless Communications in 2011, the IEEE Communications Society Young Professional Best Paper Award in 2017, and Best (Student) Paper Awards from IEEE WiOpt 2015/2014/2013, IEEE SmartGridComm 2012, WiCON 2011, IEEE GLOBECOM 2010, and APCC 2009. He has co-authored six books: "Wireless Network Pricing," "Economics of Database-Assisted Spectrum Sharing," "Monotonic Optimization in Communication and Networking Systems," "Cognitive Mobile Virtual Network Operator Games," "Social Cognitive Radio Networks," and "Radio Resource Management for Mobile Traffic Offloading in Heterogeneous Cellular Networks." He received the CUHK Young Researcher Award in 2014 and IEEE ComSoc Asia-Pacific Outstanding Young Researcher Award in 2009.

Dr. Huang has served as an Editor of the IEEE Transactions on Mobile Computing, IEEE/ACM Transactions on Networking, Editor of IEEE Transactions on Network Science and Engineering, Editor of IEEE Transactions on Cognitive Communications and Networking, Editor of IEEE Transactions on Wireless Communications, Editor of IEEE Journal on Selected Areas in Communications - Cognitive Radio Series, Editor and Associate Editor-in-Chief of IEEE Communications Society Technology News. He has served as a Guest Editor of IEEE Journal on Selected Areas in Communications, IEEE Transactions on Smart Grid, IEEE Network, and IEEE Communications Magazine. He also serves as a Co-Series-Editor of Wiley Information and Communication Technology Series, an Area Editor of Springer Encyclopedia of Wireless Networks, and a Section Editor for Springer Handbook of Cognitive Radio.



<back>