Why Not Build the Best Power System? – Problems with Ratebase-Indexe
Compensation

Hawaii Clean Energy Law and Finance
July 21, 2017

Matthias Fripp
University of Hawaii Economic Research Organization (UHERO)
Renewable Energy and Island Sustainability (REIS)
Asst. Prof. of Electrical Engineering
University of Hawaii at Manoa
mfriipp@hawaii.edu

http://ee.hawaii.edu/~mfriipp
Challenges in Planning a High-Renewable Power System

- Wind and solar power vary with the weather
- Planners must choose a least-cost combination of wind, solar, storage and conventional power plants to meet the load each day
- Must solve for many years simultaneously (evolution of power system)
slow renewable adoption; adds HECO-owned CC plant

more renewables; adds/retains HECO-owned thermal plants

HECO plants (gray) phase out; AES continues; more wind+solar
Utility-Owned Generation in the Plans

Installed capacity (MW)

PSIP Apr 2016

PSIP Dec 2016

SWITCH

- Combined Cycle
- IC Projects
- Kahe/Waiau/CIP
Production and Cost Comparison

7% offshore wind

25% biofuel

10% biofuel

Electricity Cost, Excluding T&D

PSIP Dec 2016

SWITCH
• Why would HEI prefer to keep running their thermal plants instead of switching to cheaper renewables?

• Because that’s what we pay them to do!
Summary

• HEI’s profits are pegged to the size of the ratebase (their assets used to serve customers)
• We don’t allow HEI to build new ratebased generators
• If HEI adopts the cheaper generation plan, they must retire existing generators, shrinking ratebase and profit
• HEI’s profits are maximized by sticking with the status quo
• Solution: peg utility profits to something else
Utility Rates of Return

• Utility dividends: around 4% of share price
 – This is what the market is willing to accept for investments in utilities

• Allowed rates of return on equity invested in ratebase: around 10%
Averch-Johnson Effect (1962)

If a regulated company is given a rate of return on equity that is above the market rate, they have an incentive to build too many assets or “gold plate” their assets.

Suppose a utility issues $100 million in common stock and invests the proceeds in ratebased assets:

- dividend yield will stay constant if they pay another $4M/year in dividends (4% of new stock value)
- income will rise by $10M/year (10% allowed return)
- company has $6M extra to enrich dividends; eventually stock price rises
“Competitive bidding, unless the Commission finds it to be unsuitable, is established as the required mechanism for acquiring a future generation resource or a block of generation resources.”

“Competitive bidding shall enable the comparison of a wide range of supply-side options, including PPAs, utility self-build options, turnkey arrangements (i.e., build and transfer options), and tolling arrangements where practical.”

– Hawaii Public Utilities Commission, 2006
Averch-Johnson Corollary

Current situation:
- HEI owns some generation assets which are receiving above-market return on equity
- New generation assets will mostly not receive above-market return
- Adding new generation assets will lead to retirement of old assets

Consequences:
- Any new generation will undermine HEI share price
 - IPP/DG: $100M of rate base is retired and proceeds are used to buy back stock; company can now pay out $4M less per year and maintain same 4% dividend yield; but income drops by $10M, so dividend yield must fall
 - Competitive utility-owned: $100M of existing assets at 10% are replaced by $100M of new assets at 4%; profits fall by $6M/year; dividend per share falls
- The utility’s best option is to preserve the status quo or seek waivers for new utility-owned generators
What’s Good for HEI May Not be Good for Customers

With above-market rates of return on equity, there is a conflict between the utility’s role as asset owner and planner

- Without competitive bidding rules:
 HEI does best by overinvesting in generation assets

- With competitive bidding rules:
 HEI does best by protecting legacy assets

- Neither of these are best for customers

We are paying HEI to preserve or expand the ratebase, not to do what’s best for customers
“It is difficult to get a man to understand something, when his salary depends upon his not understanding it!”

– Upton Sinclair, 1935

• HEI has come remarkably far, given that moving toward a better generation portfolio will reduce their earnings per share

• There is no reason they should be enthusiastic about going further
What to Do?

Problem: We pay HEI entirely based on the size of their ratebase, but we want them to be indifferent about the size of the ratebase (happy to shrink ratebase and use 3rd-party renewables and DG instead)

Solution: Pay them for something that is neutral or positive for ratepayers instead
A Better Way to Pay?

Reduce allowed return on equity from 10% to 4%

- Then changing the ratebase will not affect HEI’s dividend yield
 - $100M of rate base is retired and proceeds are used to buy back stock; earnings drop by $4M/year and earnings requirement drops by $4M/year; earnings per share are unchanged
- HEI will be indifferent between owning its own generation or buying power from IPPs or customers

Accumulate rest of profit in neutral or pro-customer ways

- **neutral**: give HEI 0.7¢ per kWh of power delivered (or avoided via DG or efficiency)
 - HEI maximizes sales (and profits) by choosing a least-cost plan
- **pro-renewable**: give HEI 3.5¢ per kWh of renewable power consumed in 2018, tapering down to 0.7¢ by 2045
- **other metrics and baselines**: reliability, carbon-intensity, average power price, stable power price…

HEI makes the same profit as before, but now it wants the same things as ratepayers (or at least regulators!)
Suppose Hawaii adopts a carbon tax…

- **Ratebase-based profit:** HEI’s most profitable option is to keep oil plants running and pass the tax through to ratepayers

- **Sales-based profit:** HEI can boost sales and profits by offering lower-cost renewable power
 - customer interests feedback to HEI’s interest
 - market-oriented incentives have the expected effect
Soundest way to calculate market-based return on equity is to look at what the market is paying for the returns they are getting (discounted cash flow model):

market rate of return = market dividend yield + expected dividend growth rate

- Dividend yield for utility stocks is about 4%
 - market buys shares, boosting stock price, until dividend yield reaches this level
- In utility rate of return studies, expected dividend growth rate is based on analyst estimates of 5–6%/year long-term dividend growth
 - implication is that investors buy utility stocks because they get 4% now and expect dividends per share to grow by 5–6% per year; so HEI must pay 9–10% to attract capital
 - utility dividends per share do not actually grow; analyst growth estimates evaporate as long-term becomes short-term
 - the market bids up HEI shares until the yield is 3.75%, even though they don’t expect dividends per share to grow; HEI dividend per share has been $0.31 for 74 quarters in a row
- Using an above-market rate blocks progress toward a cheaper, cleaner power system