Performance-Based Ratemaking to Drive Least-Cost Planning

EUCI 7th Hawai‘i Power Summit – “Setting the Table for Success”
November 30, 2017

Matthias Fripp
Asst. Prof. of Electrical Engineering
University of Hawaii at Manoa

Renewable Energy and Island Sustainability (REIS) program
University of Hawaii Economic Research Organization (UHERO)

mfripp@hawaii.edu
http://ee.hawaii.edu/~mfripp
• By regulation, HECO’s only profit is based on the amount of assets they own
 – We will punish HECO for doing the right thing
 • Earnings per share will drop if they accept renewable power instead of using their own thermal plants
 – HECO is moving ahead with renewables anyway, but we’re not making it easy

• Solution: peg HECO profits to performance instead of capital assets
 – Savings from building a better power system (2¢–8¢/kWh) are much larger than HEI’s profits (~1.2¢/kWh)
 – There’s room for a win-win solution
Utility Rates of Return

• Utility dividends: around 4% of share price
 – This is what the market is willing to accept for investments in utilities

• Allowed rates of return on equity invested in ratebase: around 10%
Averch-Johnson Effect (1962)

If a regulated company is given a rate of return on equity that is above the market rate, they have an incentive to build too many assets or “gold plate” their assets.

Suppose a utility issues $100 million in common stock and invests the proceeds in ratebased assets:

- dividend yield would stay constant if they paid another $4M/year in dividends (4% of new stock value)
- income will rise by $10M/year (10% allowed return)
- company has $6M extra to enrich dividends (higher earnings per share, EPS); eventually stock price rises
Averch-Johnson Corollary

If a regulated company is given a rate of return on equity that is above the market rate, they have an incentive not to retire their assets.

Suppose a utility retires plants with book value of $100 million and uses proceeds to buy back common stock:

- company can now pay out $4M less per year and maintain same 4% dividend yield
- but income drops by $10M/year (10% allowed return)
- earnings on remaining shares will be reduced by $6M
- stock price falls until dividend yield returns to market rate (4%)
“Competitive bidding, unless the Commission finds it to be unsuitable, is established as the required mechanism for acquiring a future generation resource or a block of generation resources.”

“Competitive bidding shall enable the comparison of a wide range of supply-side options, including PPAs, utility self-build options, turnkey arrangements (i.e., build and transfer options), and tolling arrangements where practical.”

– Hawaii Public Utilities Commission, 2006
Unintended Consequences

Current situation:
- HEI owns thermal plants which are receiving above-market return on equity
- New wind and solar power will not be owned by HEI
- Adding new wind and solar will lead to retirement of old thermal plants

Consequences:
- Switching to wind and solar will undermine HEI share price
- The utility’s share price is maximized by preserving the status quo or seeking waivers for new utility-owned generators
What to Do?

Problem: We pay HEI entirely based on the size of their ratebase, but we want them to be indifferent about the size of the ratebase

Solution: Pay them for performance instead of ratebase
A Better Way to Pay

Reduce allowed return on equity from 10% to 4%

- Then changing the ratebase will not affect HEI’s dividend yield
 - $100M of rate base is retired and proceeds are used to buy back stock; earnings drop by $4M/year and earnings requirement drops by $4M/year; earnings per share are unchanged
- HEI earnings per share will be the same whether they own their own generation or buy power from IPPs or customers

Accumulate rest of profit in neutral or pro-customer ways

- **neutral**: give HEI 0.7¢ per kWh of power delivered (or avoided via DG or efficiency)
 - HEI maximizes sales (and profits) by choosing a least-cost plan
- **pro-renewable**: give HEI 3.5¢ per kWh of renewable power consumed in 2018, tapering down to 0.7¢ by 2045
- **other metrics and baselines**: reliability, carbon-intensity, average power price, stable power price…

HEI makes the same profit as before, but now its incentives align with what the ratepayers (or at least regulators!) want
Earnings with Performance-Based Rates

“Oahu Gen Co” Earnings per Share

$/share/year

2017 2020 2022 2025 2030 2035 2040 2045

PSIP, ratebase-only profit

SWITCH, ratebase-only profit

SWITCH, performance-based profit
Effect on Environmental Policy

Suppose Hawaii adopts a carbon tax…

- **Ratebase-based profit:** HEI’s most profitable option is to keep oil plants running and pass the tax through to ratepayers

- **Sales-based profit:** HEI can boost sales and profits by offering lower-cost renewable power
 - customer interests feedback to HEI’s interest
 - market-oriented incentives have the expected effect
Soundest way to calculate market-based return on equity is to look at what the market is paying for the returns they are getting (discounted cash flow model):

\[
\text{market rate of return} = \text{market dividend yield} + \text{expected dividend growth rate}
\]

- **Dividend yield for all utility stocks is about 4%**
 - market buys shares, boosting stock price, until dividend yield reaches this level
- **In utility rate of return studies, expected dividend growth rate is based on analyst estimates of 5–6%/year long-term dividend growth for utility sector**
 - implication is that investors buy utility stocks because they get 4% now and expect dividends per share to grow by 5–6% per year; so HEI must pay 9–10% to attract capital
 - utility dividends per share do not actually grow; analyst growth estimates evaporate as long-term becomes short-term
 - the market does not require 10% dividends to buy HEI shares; they bid up the HEI share price until the yield drops to 3.75%
 - the market is not counting on dividend growth for HEI; HEI dividend per share has been $0.31 for 76 quarters in a row
- **Using an above-market rate blocks progress toward a cheaper, cleaner power system**