Karnaugh Maps (K-Maps)

Method to simplify SOP

Boolean Algebra

We can use the following

$$
\begin{aligned}
& X+\bar{X}=1 \\
& X Y+X Z=X(Y+Z) \quad \text { Factoring } \\
& X=X+X
\end{aligned} \quad \text { Duplicating }
$$

Example

$$
\begin{aligned}
& X_{1} X_{0}+\bar{X}_{1} X_{0}+X_{1} \bar{X}_{0} \\
& \quad=\left(X_{1}+\bar{X}_{1}\right) X_{0}+X_{1} \bar{X}_{0} \\
& \quad=1 \cdot X_{0}+X_{1} \bar{X}_{0} \\
& \quad=X_{0}+X_{1} \bar{X}_{0}
\end{aligned}
$$

Example

$$
\begin{aligned}
& X_{1} X_{0}+\bar{X}_{1} X_{0}+X_{1} \bar{X}_{0} \\
& =X_{1} X_{0}+X_{1} X_{0}+\bar{X}_{1} X_{0}+X_{1} \bar{X}_{0} \\
& =\left(\dot{X}_{1}+\dot{X}_{1}\right) X_{0}+X_{1}\left(X_{0}+\dot{\bar{X}}_{0}\right) \\
& =1 \cdot X_{0}+X_{1} \cdot 1 \\
& =X_{0}+X_{1} \quad \text { Duplicating helps }
\end{aligned}
$$

Observations

Difficult to find these grouping of terms that can be factored and simplified

K-Maps help to find these groups of terms, which are called "implicants"

Let's see if we can find implicants by just writing them down

$\frac{00}{X} \bar{Y}$	$\frac{01}{X} Y$	${ }^{10} \bar{Y}$	${ }^{11}$
$X Y$			

Observations

Gray code: $00 \quad 011110$

Only one bit changes between neighboring numbers, including wrap around

Bits that don't change correspond to literals that are factored out

Example

$X_{1} X_{0}+\bar{X}_{1} X_{0}+X_{1} \bar{X}_{0}$

