University of Hawaii EE 361L

Project 2.1 and MPLab Quick Tutorial
Last updated August 28, 2016

This is Lab 2.1 and an MPLab X Quick Tutorial. We first begin with the tutorial.

This is a quick tutorial of programming the PIC 16F684A processor using the MPLab X Integrated Development
Environment (IDE) v. 3.35. Programming the processor has the following steps:

e Create a Project in MPLab X using the Project Wizard. Alternatively, you can create a new project using
the New option or open an existing project.

e C(reate, add, delete, and edit source code, and in this case the language will be C.

e Compile the code using Build.

e Simulate and debug the program.

e Recompile the code using Rebuild.

e Set up the processor chip on a protoboard.

e Program the processor using Pickit 3.

e Run the processor.

You can get a copy of MPLab X for FREE. Go to the following web site and you will find a zipped version

http://www.microchip.com/stellent/idcplg?ldcService=SS GET PAGE&nodeld=1406&dDocName=en019469&
part=SW007002

The current version at the time of this writing is 3.35. This may be a newer version that the one we’ll use in
the Holmes 451 lab room, but the operation should be about the same. Let the TA know if this is not the case.

Contents
1 IMIPLAD TUEOIIAN ettt h e s h e st st e bt e bt e b e e s bt e s st e e at e e at e e bt e b e e nbeesheesmnesar e e be e beenneennes 2
i R O =F (I T o o 1= ot PP PP PPPPPPPPPPPPPPRE 2
1.2 Create SOUICE COUE.oiiiiiiiieeitee ettt ste e ettt et e s bt ettt e s a bt e s beeesabe e s beeemeeesabe e e seeesabeesaneeesabeeaabeeesteesabeeeasseesnseesaneeesareesn 5
1.3 Build, Simulate, and REDUIIuuviiiiiieeieee et e e e e et e e e e e e e e ettt e e e e eeessssasttaeeeaeeesssssseeeeeaaeeesnnssnns 6
O Yo LN T I Y= U o PP PPPPUPTSPPRIRE 12
5 ProgrammingG the PIC ... ittt e e e e e e s et e e e e ettt e e e e e bte e e e eabaeeeeaabaeeeeaabeeee e sbaeeeeanteeeeeanseeeeesnseeesennsens 16
6 Manuals and TULOFIAIS IN IMPLAB Xcouiiiiieieei ettt ettt ettt st sttt bt b e b e be e s be e emt e et e et e e sbeesbeesaeesanesaneeabeeneennes 17
A Y 1 A R o o =Tt PP 17
T O ol DI = Y= - o FO TP PP TP UPPRTPPPPTTN 18

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002

1 MPLab X Tutorial

1.1 Create a Project

Open MPLAB X IDE v3.35

a MPLAB X IDE w3.35 - Test1 : defaul

File Edit View Navigate Source Refactor Run Debug Team Tools Window Help Q- Search (Ctri+)
= £) @ : [deaut -] - D .%vlﬁm. @ ER ~ fpcoof |zdcc : wion0:bankn| 1 Howdor
O | startPage % EHEE
I MPLAB RS\ MicrocHIP
o X IDE
5 "\v/r LEARN & DISCOVER | MY MPLAB® X IDE | WHAT'S NEW
&
=2
N PReEEE MY MPLAB® X IDE
2 # Open Sample
2 # Create New
™ & importLegacy Recent Projects Microchip Login
il import Prebuilt
8 Already Registered? New to Microchip?
]
Eg'DBE EE'PREDE References & Featured Links
» Errata » Technical Articles and White Papers -

Go to File->New Project

Step 1: Select “Microchip Embedded” and “Standalone Project”. Click “Next”.

Step 2: For the Family option, select “Mid-Range 8-bit MCUs”, then select PIC16F648A for the device, which is
our processor. Click “Next”. For the “Select Header”, just skip this step and click “Next”. For the “Select Tool”,
we will use PICkit3, click the “PICkit3”, and click “Next”. For the “Select Complier”, select XC8 Compiler.

Step 3: For Create New Project File, browse and select a folder to store you files. For this tutorial, go to the
Desktop (by going up folders). Then create a new folder, and give it a name such as EE361LMPLabTutorial. Go
into the folder, then give the project file a name such as EE361LFirstProject and save. Note that the project
folder will be given a suffix of “.X”.

Step 4: Add any existing files to your project but currently you don’t have any so you can skip this step. Then
you are Finished.

Choose Project

g_New Project- E

Q, Filter:

Categories:

¥ sWMicrochip Embedded
|, Other Embedded
|0 Samples

Projects:

|5 Standalone Project

ﬁ Existing MPLAE IDE v3 Project

ﬁ Prebuilt (Hex, Loadable Image) Project
[User Makefile Project

[5 Library Project

Description:

project.

Creates a new standalone application project. It uses an IDE-generated makefile to build your

Select Tool

o | [) 0]

Q_New Project. E

, Hardware Tools

o PICKIE2

o0]

-2 Real ICE
-2 Simulator
Microchip Starter Kits
| Other Tools
-2 Licensed Debugger

<Back || Mext> || Finish

g New Proj_ect E

Steps Select Compiler

Choose Project
Select Device ., Compiler Toolchains
Select Header +HI-TECH PICC {Nane found)
M«Jﬁ'mad -mpasm
in Boar T e)
lect Compiler 0 mpasm {v5.68) [F:Microchip\MPLABX \w 3. 35\mpasmx]

Select Project Name and ; . . .
Folder s C8 (v1.38) [F:\Microchipxcatv 1. 38'bin]

- WL N,

[< Back][Mext =] Einish [Cancel ”

ﬂ New ProJTct

Select Project Name and Folder

Project Name:

Project Location: F:\MPLAB_X_WORK

Project Folder: F:\MPLAB_X_WORK

NG bW

Owerwrite existing project.
Also delete sources.

Set as main project
[] Use project location as the project folder

Encoding: 150-8859-1

0 Project Name is not a valid folder name.

Mext = Einish

1.2 Create Source Code

In one of the windows, you should see the project files:
(Here a file testlab2.c is added to the project)

Projects # [=]
EIQ

-- Header Files
ﬁ' Important Files
-- Linker Files
E} Source Files
P EI testlab2.c
ﬁ' Libraries
ﬁ;‘ Loadables

[EcClasses [/ Files Th

Test1 - Dashboard Havigator [=]

It is recommended you put your source files under the “Source Files”. To do so, just click the “Source Files”
before you create a new file. After you create your file, it will be under the “Source Files”. If the file appears in
other folders, just drag it to the target folder.

You can add source files, which can be done in a number of ways. One way is to go to File->New File which
will open a window. You can the language you will use for the new source file, such as C or C++. Type the
simple program in Figure 2.1. To save the program, go to File->Save As. Then save it in your project folder as

“simple.c”.

/* Simple test program for PIC 16F648A

* It's a while loop that changes the outputs
* RBO and RB1 to zeros and ones

*/

#include <htc.h> // Header file for PIC processor library files

main(void)
{

inti;

i=0;

TRISB = 0x00; /* RBO and RB1 are outputs */

/* RB1 is an output and the rest of PORTA are inputs */
while(1) {/* Turn RBO and RB1 on-and-off */
if (i<2) {
RBO =0;
RB1 =0;
RBO =1;
RB1 = 1;
}
else {
RBO =0;
RB1 =0;
}
i++;
if(i>=4)i=0;
} /* End while-loop */
}/* End main */

Figure 2.1. A simple program for the PIC: simple.c.

1.3 Build, Simulate, and Rebuild

Before compiling, set the configuration bits by going to the “Window” menu and selecting “PIC Memory
Views”. Click the “Configuration Bits” and select the following. (or you can go to Run->Set Configuration Bits)

FOSC XT BOREN ON
WDTE OFF LVP OFF
PWRTE OFF CPD OFF
MCLRE OFF CP OFF

To compile the program, go to Run->Build Main Project.
6

Note: please do not have more than 1 source file containing the main() function, otherwise you will get an
error when compiling your code.

Output ‘Configuration Bits 2 | =

QI Address Name Walue Field Option Category Jetting

5 CONFIG FF49 Fo5C |XT - 03cillator Selection bits \XT oscillator: Crystal/rescnator on RR6/05C2/

= WDTE OFF Watchdog Timer Enable bit WDT disabled

— PWRIE OFF Power-up Timer Enabkle kit PWRT disabled

m MCLRE OFF RAS/MCLE/VEF Pin Functiocn Select bit BARS/MCLE/VFF pin function is digital input, MQ
BOREN ON Brown-out Detect Enable bit BOD enabled
VP OFF Low-Voltage Programming Enabkle bit EB4/PGM pin has digital I/0 function, HV on MO
CED OFF Data EE Memory Code Protection bit Data memory code protection off
CF OFF Flash Program Memory Code Protection bit Code protection off

4| [l r
Memory | Configuration Bits v | Format Read/Write - l e ”

15:27 INS
You can click the “Generate Source Code to Output” as in the figure. This will generate a set of macro
definitions. You can copy the generated output and paste to the top of your source file (right after the line of
“#include XXX").

To simulate the program, first, right click your project, or click the “File->Project Properties”. When we create
the project, we select the “PICkit3”, now we select the “Simulator” option, then click “OK”. The MPLAB X
Simulator is a software simulator even though it's listed under the “Hardware Tools”.

Before we start the simulation, set up the following options:
From the “Tools” pull down menu select “Options”

Select the “Embedded icon”

Select the “Generic Settings” tab

Ensure the “Debug startup” is set to ‘Halt at Main’

You can reset the simulation with Debug-> Reset.

There are a couple of options to run the simulation. Here’s the simplest. Go to Debug->Debug Main Project.
This will start the simulator. If you have set up the options above, you will now halt at the location just
beneath the “main” function. The current instruction is shown either as a green-arrow or some other
highlight. To continue simulating one instruction at a time, keep pressing the F7.

On the other hand, if you select Run, then the simulator will just run the program with the “Continue” icon
(F5). To stop it, you can Halt. The simulation will often run too quickly for you to observe what’s going on. So
single stepping is more useful in many cases. But try it to see what happens, you won’t break the machine.

If you make changes to the source code, you can Rebuild rather than Build.

There are different ways to watch the variable values of the simulation change over time. They can be found
under the menu “Window->Debugging” and “Window->Simulator”. You can watch the PICs hardware (such as
PORTB, RBO, and RB1) using the “Window->Simulator->Analyzer” and Special Function Registers. The Logic
Analyzer will display the values as a graph over time (if you want to use this function, it is recommended to
open the analyzer window before the simulation). Another way is “Window->Debugging ->Watches”. This
opens a window where you can select the PIC hardware you would like to view (e.g., PORTB, TRISB) as well as
variables from your program (e.g., the variable “i” in Figure 2.1). You can select two types of values: SFR

which are the registers in the PIC, and Add Symbol which are variables in your program such as “i”. See Figure
3.1 for an example snapshot of Watch.

Note that in MPLAB X, variables near the executed line will be displayed in the “Variables” tab. To display all
variables, you can press the icon next to the “Name” column. This will display all variables in the program.

Watches Stimulus Logic Analyzer Variables # | Qutput =]
Mame Type Address Value @
7 (7]) TRISE SFR) oxas [) oxos L)~
© 7 [F] § PORTE SFR [)oxs L) L)
[<Enter new watch> 0 B B
@i int L) oxo] oxo002 L
Test1 (Build, Load, ...) | debugger halted l'j\r‘l 30:1 INS

Figure 3.1. An example snapshot of the Watch window.

Another window to trace your simulation is “Window->Debugging->Trace”. This will show the machine
instructions executed and when they were executed (in CPU clock cycles). You can right click your project,
then select “Properties”, select “Simulator” under the “Categories”, then select “Trace” under the “option
categories” to enable the trace.

Reset your program and single step. Observe how the values change.

Now let’s change the simple.c program so that it accepts an input from port RB2, as shown in Figure 3.2 which
also shows the modifications. Note that TRISB has to be changed so that the bit 2 is set to 1, indicating that
RB2 is an input port. Recall that 0x04 in binary is 0000 0100.

Also, the if-statement is changed so that it is conditioned on RB2. Thus, the program flow will depend on the
value of RB2.

To cause input changes to occur in the simulation, we use the “Window->Simulator->Stimulus” option that’s
part of the Debugger. Selecting Stimulus will open a window, where you can control the input values to the
PIC. Let’s have the input RB2 be initially zero. Select the tab Pin/Register Actions. There are two columns:
the left corresponds to time and these values are in decimal (dec), and the right corresponds to the different
pins and their values, which are in binary (bin). In the first row, under Time, enter 0, which indicates our
values at the initial time 0. We can fill the row with different pins but in our case we’re only interested in RB2.
Click the where it states “Click here to Add Signals”, and add RB2. Then enter the value O for the pin. Also,
make sure that “Repeat” is disabled.

Select the Asynch tab. This allows you to change signals during simulation by the user input. For now, we’re
interested in the Fire, PIN/FSR, and Action columns. In the first row, select RB2 under PIN/FSR. Then for
action select Set High. Now, this row is set up so that when we click “Fire”, the RB2 pin will go high. Click the
Apply button so that the Stimulate information is attached to your simulation.

/* Simple test program for PIC 16F648A

* It's a while loop that changes the outputs
* RBO and RB1 to zeros and ones

*/

#include <htc.h> // Header file for PIC processor library files

main(void)
{

inti;

i=0;

TRISB = 0x04; /* RBO and RB1 are outputs */

/* RB1 is an output and the rest of PORTA are inputs */
while(1) {/* Turn RBO and RB1 on-and-off */
if (RB2==1) {
RBO =0;
RB1 =0;
RBO =1;
RB1 =1;
}
else {
RBO =0;
RB1 =0;
}
1++;
if (i>=4)i=0;
} /* End while-loop */
}/* End main */

Figure 3.2. Modified simple2.c that accepts input from RB2. The changes are highlighted in yellow.

Run the modified simplel.c program by single stepping. Run it through the while-loop a few times. Notice
that RB2 is zero so that it executes the else-statement rather than the if-statement. You can also check the

Watch window.

Then click the Fire button in the Stimulate window. This will cause RB2 to change value the next time you
single step. Now the if-statement is executed rather than the else-statement. You can also view the Logic
Analyzer to see the signals varying over time.

Figures 3.3 show snapshots of the two tabs of the Stimulus window.

You can also generate periodic signals from the Stimulus window by clicking the Repeat option. Then add
signals so they change over time, each row being a different time. These input signals will repeat when the
simulation is run.

For more information about MPLAB X, select Help and under Tool Help Contents select the Simulator. Thisis a
tutorial. You can go over the various chapters of the tutorial including the chapter on Using Stimulus.

Watches | Stimulus & | Variables | Output | =]

Asynchronous | Pin/Register Actions | Advanced Pin/Register | Clock Stimulus | Register I.njecﬁonl

Time Units :cyc - [] Repeat from action: - Wait between repeats:

Time PORTB.REZ Click here to add fremove signals

IR EE©

P
o
1

i

)
2]
=l

Synchronous stimulus has been removed successfully.

Test1 (Build, Load, ...) | debugger halted ®| 30:1 INS
Watches | Stimulus | Variables | Qutput | =
|@| Asynchronous | Pin/Register .&ctionsl Advanced Pin/Register | Clock Stimulusl Register I.njectionl
Fire Pin Action Value Units Comments
[T N R S -
=
el
=l
SCL
&=l
SCL
Test1 (Build, Load, ...} | debugger halted @| 301 | s

Figure 3.3. The Stimulus window: top is the Pin/Register and the bottom is Asynch.

Enclosed with this manual is a program testlabl.c that will have the PIC 16F648A control an LED at output port

RBO. The LED will blink every half-second. You can simulate this program. However, single stepping isn’t as

helpful because this program will run millions of instructions before any changes in the output RBO occurs —
10

very long delay loops. In this case, you should “Run” the program. Let it run for a while and then Halt. You
can verify that the output is blinking by checking the Logic Analyzer. In the Analyzer, you must select the
Channels to view — there’s a Channels button where you can choose RBO to view. Actually, the blinking

transitions take so long that you can see a square wave in the window of the Analyzer. Though you can see it
transition from low to high or from high to low.

Note: if you are going to download the compiled file to the PIC chip, please switch the setting from
“Simulator” to “Pickit3”.

11

4 Hardware Setup

Here are the parts that you should have:

e Pickit3 and USB connector (as shown in Fig. 4.1), which should be in a small plastic bag (snack size

bag). Your group should pick up a bag. The bag should also contain some wires that are used to
connect the Pickit3 with a protoboard.
e Protoboard
e Parts kit, which should contain
0 PIC 16F648A chip
O LEDs
0 four MHz crystal oscillator (XTAL)
0 two 15-30 pf capacitors

Pin 1 Indicator

Pin Description*

1= MCLR/VPP

2 = VoD Target

3= Vss (ground)

4 = PGD (ICSPDAT)
5= PGC (ICSPCLK)
6= PGM (LVP)

>

DB Wl =

* The 6-pin header (0.100" spacing) accepts 0.025" square pins.

Figure 4.1. Pickit3 and its pin out.

Step 1. First go over Figures 4.1, 4.2, 4.3, and 4.4.

Figure 4.1 shows the six connections of the Pickit3:

e VPP/MCLR
e VDD
e VSS

e ICSPDAT/PGD
e ICSPCLK/PGC
e Auxiliary.

12

Figure 4.2 has a typical set up to connect the PIC to Pickit 3, but the pinouts shown are not of the PIC 16F648A.
The pinouts for the PIC 16F648A are shown in Figure 4.3. Note that ICSPDAT and ICSPCLK in Figure 4.2
correspond to PGD and PGC, respectively in Figure 4.3.

Isolation Circuitry:
Resistor or Schottky-type diode

PICKit™ 2
Programming
AT Header
1 VPRIMCLR ,
2 VDD =
3 V55 -
————p
4 ICSPDATPGD
—
5 ICSPCLKIPGC
+5V] ALY >
| + -
10k* 2 470 Ohm*
< e L oo)
| OR | <ras RaoncspDaTL AVA——b To Application
L -E-Hﬁwt HA‘I.’ICSPCLKE OO Cireuit
RAIMCLRAVPP RAZE
“To.1 uF* Target Microcontroller
Device e
_—
.

* Typical Values

Figure 4.2. Typical set up for the Pickit 3 and the PIC processor, but not the correct pin numbers for 16F648A.

RA2/AN2IVREF .._..[
RAJ/ANIICMP 1 +——] |
RAHTOCKICMP2 4_..[

RAS/MCLR/Vee —-|:

18 |-—- RA1/AN1

17 :IH RAQAND

16 :I-—- RATIOSC1/CLKIN
15 :[-—- RAG/0SC2/CLKOUT

14 [J+— voo

RBO/NT «—={ | 6 13 []«—= RB7T10SIPGD
RBARXDT+—{| 7 12 [Je— RBET10SOITICKIPGC
RB2TX/ICK+—=] | 8 1 [Je—> RBS5
RBI/CCP1+—s] |8 10 [Je— RB4/PGM

h B L R

Vas —|-|:

PIC16FB2TA/G2BAIG4BA

Figure 4.3. Pin out for the PIC 16F648A.

13

The following table explains how the Pickit3 should be connected to the PIC 16F648A.

Pickit3 Pins PIC 16F648A pins

Pin 1 (VPP/MCLR) Pin 4 (RA5/MCLR/VPP)

Pin 2 (VDD) Pin 14 (VDD)

Pin 3 (VSS) Pin 5 (VSS)

Pin 4 (ICSPDAT/PGD) Pin 13 (RB7/T10SI/PGD)

Pin 5 (ICSPCLK/PGC) Pin 12 (RS6/T10SO/T1CKI/PGC)
Pin 6 (AUX)

Here is a description of these pins:

e VPP/MCLR: Pin used to reset the PIC. “Reset” is Ov, while “run” is 5v. By connecting this to the PIC’s
MCLR pin, the MPLAB software can control this pin, which means you can reset the PIC by the MPLAB
software. Note that MCLR has an overbar in the documentation. This means that the pin is enabled
with a low voltage. So a low voltage will reset the PIC, and a high voltage will allow the PIC to run.

e VDD: Voltage source. You can use this as the voltage source for the PIC. This can be controlled by the
MPLAB software.

e VSS: Ground
e PGD: Used to program the PIC. It is the data connection.
e PGC: Used to program the PIC. It is the clock signal.

The Pickit3 and MPLab X allow in-circuit, serial programming (ICSP). This means that the Pickit3 can be
attached to the PIC while the PIC is running. You can reprogram the PIC without removing it from the
protoboard.

Step 2 (Connecting Pickit3).

e Place a PIC 16F648A into the protoboard
e Be sure that the Pickit3 is not powered, i.e., it’'s USB connector is not connected to anything
e Connect the Pickit3 to the PIC 16F648A according to the table above. Use the wires in the plastic bag.

These wires are slightly thicker than ordinary wires we use for protoboards because the Pickit3
connectors need slightly thicker wires.

Step 3 (Connecting crystal oscillator).

Connect the PIC16F648A to the 4 MHz crystal oscillator (XTAL) as shown in Figure 4.4. In the figure, OSC1 and
0SC2, are pins 16 and 15 of the PIC 16F648A (see Figure 4.3), respectively.

Since we use 4MHz crystals, the mode should be “XT” (see Figure 4.4). The capacitors in the figure should be

15-30 pF but for this lab, we’ll forget about them. So instead of capacitors, we’ll leave it “open”. Also, we will
not use the series resistor.

14

TABLE 14-1:

CAPACITOR SELECTION FOR

CERAMIC RESONATORS

' Mode Freq 0sCc1(C1) | 0SC2(C2)
OSC1 XT | 455kHz | 22-100pF | 22-100 pF
2) 2.0 MHz 15-68 pF 1568 pF
C1 4.0 MHz 15-68 pF 15-68 pF
N .
XTAL g HS | 80MHz | 1068pF 10-68 pF
- 'Z! RF ; Sleep 160MHz | 1022 pF 10-22 pF
= osc2f "1 .
rsil o . Fosc TABLE 14-2: CAPACITOR SELECTION FOR
o2 L CRYSTAL OSCILLATOR
PIC16F62TA/628A/648A Mode Freq 0sCc1(C1) 0SC2(C2)
Mote 1: A series resistor may be required for AT strip cut LP 32 kHz 15-30 pF 15-30 pF
crystals. 200 kHz 0-15 pF 0-15 pF
2: See Table 14-1 and Table 14-2 for recommended XT 100 kHz 68-150 pF 150-200 pF
values of C1 and C2. 2 MHz 15-30 pF 15-30 pF
4 MHz 15-30 pF 15-30 pF
HS 8 MHz 15-30 pF 15-30 pF
10 MHz 15-30 pF 15-30 pF
20 MHz 15-30 pF 15-30 pF

Figure 4.4. PIC’s configuration with the crystal oscillator.

Step 4 (connect LED to port RBO)

Connect an LED to port RBO as shown in Figure 4.5. The LED has two leads

e Anode (long lead), which is connected to the higher voltage, and in our case RBO

e Cathode (short lead), which is connected to the lower voltage, and in our case Ground (GND) or 0 volts

RBO (pin 6) ——~\VAV\V-

anode (long lead)
~
~
cathode (short lead)

Ground (GND)

Figure 4.5. PIC’s configuration with an LED.

Step 5 (Pickit3 to computer and power)

Connect the Pickit 3 to your computer using the USB 2.0 port.

Notes: For this project, you should be able to use the 5v and ground from the Pickit 3 to supply power and
ground for your PIC and LED. If you do so, you may need to specify using Pickit 3 as power source in the IDE
setting. Other projects may need a separate power supply but this project has few current draining
components. As we have the DC power source available, you can use the source because it is more stable.

15

5 Programming the PIC

Programming can be done using the Programmer function in MPLAB X. Be sure that you select Pickit 3 as the
programmer. Then Connect. This should check if the Pickit 3 and the PIC are connected properly.

Find the icon in the MPLAB X as shown in the figure . You can click it, then the source code will be built,
and download to the microcontroller through Pickit3. Alternatively you can also click the little arrow, and then
choose “Programmer To Go Pickit3 Main Project”, this will first build your source code, and then download to
the Pickit3. If you are successful, you will see the figure as below:

PICkit3 = | Config Bits Source ® | LAB2_1 (Build, Load, ..) |

Connecting to MPLAE PICKit 3...

PICkit 3 iz not in programmer—to—go any moTe

Currently loaded firmware on PICkit 3
Firmware Suite Version.....01.43.35

Firmware t¥pe............. Midrange

Target woltage detected
Target device PIC16FE48A found.

Device ID Revision = 5

The following memory area(s) will be programmed:
program memery: start address = Ox0, end address = OxTff
configuration memory

Device Erased. ..

Programming.

Programming/Verifr complete

(]

FICkit 3 is now in Frogrammer to go mode. The next time vou connect to this unit, ryou will have the choice to take it ocut of Programmer to go mode.

4 1n | »

15:27 INS

Note the middle parts of the figure, it should demonstrate that “Target device PIC16F648A found”. If there is
any error, double check your connection of the Pickit3 pins and the microcontroller pins.

You may also see a message box as:

owe | I =

' PICkit 3 is in Programmer-to-go mode. The name of the stored image is: 'lab2_1"
__I; Do you want to stay in Programmer-to-go mode? (Saying no will erase the image in
the PICkit 3)

=] o)

You can click “No”. In this way, the data in Pickit3 will be erased, and new data will be entered.

When the code is downloaded to Pickit3, you will see the STATUS LED to be orange. When it returns to green,
you can press the button on Pickit3, this will write the program to the microcontroller.

16

The LED should be blinking.

Read the program testlabl.c if you haven’t already.

6 Manuals and Tutorials in MPLAB X

MPLAB has manuals and tutorials that you may want to explore

e XC Manual: This is the manual for the C compiler and it can be found in the Debugger menu. Chapter
7 is useful because it gives library of available function calls and methods to set fuses and registers.

e MPLAB SIM Manual: This can be found in the Help menu. There is a tutorial to explain how to run a
simulation. Most of you can follow much of this tutorial. It's somewhat straight forward to follow if
you’re familiar with microcontrollers.

e Other Manuals can be found in the Help menu too.

7 Lab 2.1 Project

Write a program for the PIC 16F648A so that RBO and RB1 are two outputs that drive two LEDs, and RB2 is an
input, which is connected to either Ov or 5v, for logic 0 or 1, respectively. When input RB2 is 0 then the LEDs
blink on-and-off simultaneously every half-second. When input RB2 is 1 then the LEDs blink on-and-off every
half-second but not together, i.e., when one LED is on the other is off.

You can modify the program testlabl.c.
Show your TA that it works. Include your code in your lab report.

Comments: The MPLAB XC compiler does not appear to give good error messages. Error messages give the
type of errors, which can be looked up in the XC compiler manual. It also appears to give the line number
where the error occurred but doesn’t have a good way to jump to the error. One approach to finding the
location of an error is commenting chunks of code out and compiling. Perhaps even to the point where your
program is simply “main() { }”. When it finally compiles then you uncomment code until it doesn’t compile
again. That will lead you to the location of the error. If you find a better way to find and correct compile
errors, share them with your fellow students.

17

8. Circuit Diagram

Extra page to draw your circuit diagram.

m
RA2/AN2/VRF «— | 1 18 [Ja—= RA1/AN1
RAANI/ICMP1+——=] | 2 17 [Je— RADIANO
!
RA4/TOCKIICMP2 «—{ | 3 g 16 | |[«—= RA7/OSC1/CLKIN
RASIMCLR/VPe —=| 4 g 15 [J+—> RAGIOSC2/CLKOUT
w
V55 —-[5 '?:: 14 }—UDD
RBO/INT «—[| & E 13 [J«— RB7/T10S1PGD
RBIRXDT+—=[|7 & 12[]«— RBGT10SOITICKIPGC
o
RB2ITX/CK+——={ | 8 1 [J«—> RBS5
RBICCP1+——=[| 9 10 [J+—= RB4/PGM
Bin Descriptions
1- VeeMGLR
[! 2 = VoD Target
3 3= V&g (Ground)
g 4 - ICSPDAT/IPGD
o 5 = ICSPCLK/PGC
6 — Auxiliary

Note: The connecior is a B-pin header with 0.100" spacing and can accept
0.025" square pins.

18

	1 MPLab X Tutorial
	1.1 Create a Project
	1.2 Create Source Code
	1.3 Build, Simulate, and Rebuild

	4 Hardware Setup
	5 Programming the PIC
	6 Manuals and Tutorials in MPLAB X
	7 Lab 2.1 Project
	8. Circuit Diagram

