
����� FINDING A DATA ITEM � THE SEARCH PROBLEM ���

�� File� sortsrch�c ��

�include �stdio�h�

�include �sortsrch�h�

�define DEBUG

��

Linear or sequential search of an array x	
 of size lim for

an item key�

��

int seqsrch�int x	
� int lim� int key

� int i�

for �i � �� i � lim� i��

if �x	i
 �� key

return�i
�

return���
�

�

Figure ����� Code for the function seqsrch�

�� File� sortsrch�h

This file contains prototypes for sort and search functions�

��

int seqsrch�int x	
� int lim� int key
�

Figure ����� Initial contents of sortsrch�h

We will implement the algorithm for search as a function	 seqsrch�
 since searching an array
may be required in many programs	 and a function incorporating linear search can be used for
many applications� The function is passed the array of integers	 x	
	 the number of elements in
the array	 lim	 and the key to search for	 key� The function is shown in Figure �����

The loop compares each element of the array with key� If an element with the same value is
found at an index i	 i is returned� The loop terminates when the array limit is reached
 in which
case	 no element equal to key was found in the array	 and �� is returned� If there is more than
one element in the array with the same value as key	 the function terminates the search as soon
as the �rst element is found	 returning its index�

We have de�ned DEBUG in sortsrch�c so that debug statements we may add to the code will
be compiled� We have also included �le sortsrch�h in sortsrch�cwhich	 as shown in Figure ����
contains the prototypes for functions de�ned in sortsrch�c since some of the functions de�ned in
sortsrch�cmay be used by other functions to be written in the �le� We will continue to add more
functions to sortsrch�c and corresponding prototypes to sortsrch�h as we proceed through this
chapter
 however	 we will not always show the additions of prototypes to sortsrch�h�

Our task now requires us to write a simple driver to repeatedly call the function	 seqsrch�
�
For simplicity	 we will declare an initialized array� The driver uses a function	 pr aray line�
	 to

��
 CHAPTER ��� SORTING AND SEARCHING

print an array with ten elements per line to save space� Figure ���� shows the program driver�
The driver �rst prints an initialized array	 id	
	 and then searches for items entered by the

user� If an item is found in the array	 its index is printed� Otherwise	 a message is printed� The
function	 pr aray line�
 is included in sortsrch�c and its prototype in sortsrch�h� These
additions are shown in Figure �����

The function prints at successive elements on one line until the array index modulo �� is zero
when it prints a newline and continues� A sample session for the program srcharay�c is shown
below�

���Sequential Search���

The id array is�

�� �� �� �� �� ��

Type an integer� EOF to quit� ��

Item �� is not in the array

Type an integer� EOF to quit� ��

Item �� is found at index �

Type an integer� EOF to quit� ��

Item �� is found at index �

Type an integer� EOF to quit� 	D

���� Improving Search � Sorting the Data

As we mentioned above	 linear search may be useful when the number of elements is small
 however	
when there are many data items in the array	 linear search may require a long time to �nd the
element matching the key� In the case where such an element is not in the data base	 we must
search the entire collection to �nd that out� Consider the phone book again� When we want to
look up someone�s phone number	 we do not start at the beginning of the book and look line by
line until we �nd the name� Instead	 we make use of the fact that the data items are sorted by
name in the phone book� �Of course	 if we had a phone number and wanted to �nd the name	 we
would have to resort to linear search � we do not often do that��

Before we develop an algorithm to conduct a more e�cient search of sorted data	 we �rst
describe several algorithms which will sort an array of data� There are numerous ways to sort
data	 some more suitable than others for di�erent applications� In this section we will describe
three di�erent standard algorithms� selection sort	 bubble sort	 and insertion sort�

������ Selection Sort

The idea of selection sort is rather simple� we repeatedly �nd the next largest �or smallest� element
in the array and move it to its �nal position in the sorted array� Assume that we wish to sort the
array in increasing order	 i�e� the smallest element at the beginning of the array and the largest
element at the end� We begin by selecting the largest element and moving it to the highest index

����� IMPROVING SEARCH � SORTING THE DATA ���

�� File�srcharay�c

Other Source Files� sortsrch�c

Header Files� sortsrch�h

This program searches an array sequentially for items typed in

by the user� It prints out the array index where an item is found�

or else prints a message�

��

�include �stdio�h�

�include �sortsrch�h�

main�

� int id	
 � ���� ��� ��� ��� ��� ����

int n� i�

printf�����Sequential Search����n�n�
�

printf��The array is��n�
�

pr�aray�line�id� �
�

printf��Type an integer� EOF to quit� �
�

while �scanf���d�� n
 !� EOF
 �

i � seqsrch�id� �� n
�

if �i �� �

printf��Item �d is found at index �d�n�� n� i
�

else

printf��Item �d is not in the array�n�� n
�

printf��Type an integer� EOF to quit� �
�

�

�

Figure ����� Driver to test seqsrch�

��� CHAPTER ��� SORTING AND SEARCHING

�� File� sortsrch�c � continued ��

�� Prints an array horizontally� ��

void pr�aray�line�int x	
� int lim

� int i�

for �i � �� i � lim� i��
 �

if �i � �� �� �

printf���n�
�

printf���d �� x	i

�

�

printf���n�
�

�

�� File� sortsrch�h � continued ��

void pr�aray�line�int x	
� int lim
�

Figure ����� Adding the code for pr aray line�

position� We can do this by swapping the element at the highest index and the largest element�
We then reduce the e�ective size of the array by one element and repeat the process on the smaller
�sub�array� The process stops when the e�ective size of the array becomes � �an array of � element
is already sorted��

For example	 consider the following array	 shown with array elements in sequence separated
by commas�

�	 ��	 ��	 ��	 ��

The leftmost element is at index zero	 and the rightmost element is at the highest array index	
in our case	 � �the e�ective size of our array is ��� The largest element in this e�ective array �index
���� is at index �� We have shown the largest element and the one at the highest index in bold�
We then swap the element at index � with that at index �� The result is�

�	 ��	 ��	 ��	 ��
We reduce the e�ective size of the array to �	 making the highest index in the e�ective array

now �� The largest element in this e�ective array �index ���� is at index �	 so we swap elements
at index � and � �in bold��

��	 ��	 ��	 ��	 ��
The next two steps give us�
��	 ��	
�	 ��	 ��
��	 ��	
�	 ��	 ��
The last e�ective array has only one element and needs no sorting� The entire array is now

sorted� The algorithm for an array	 x	 with lim elements is easy to write down�

for �eff�size � lim� eff�size � �� eff�size��

find maxpos� the location of the largest element in the effective

array� index � to eff�size � �

swap elements of x at index maxpos and index eff�size � �

����� IMPROVING SEARCH � SORTING THE DATA ���

The implementation of the selection sort algorithm in C	 together with a driver program is shown
in Figure ���
�

Sample Session�

Original array�

�� �� �� �� ��

Sorted array�

�� �� �� �� ��

The driver prints the array	 calls selection sort�
 to sort the array	 and prints the sorted
array� The code for selection sort�
 follows the algorithm exactly
 it calls get maxpos�
 to get
the index of the largest element in an array of a speci�ed size� Once maxpos is found	 the element
at that index is swapped with the element at index eff size��	 using the temporary variable	
tmp�

We may be concerned about the e�ciency of our algorithm and its implementation as a pro�
gram� The e�ciency of an algorithm depends on the number of major computations involved in
performing the algorithm� The e�ciency of the program depends on that of the algorithm and
the e�ciency of the code implementing the algorithm� Notice we included the code for swapping
array elements within the loop in selection sort rather than calling a function to perform this
operation� A function call requires added processing time in order to store argument values	 trans�
fer program control	 and retrieve the returned value� When a function call is in a loop that may
be executed many times	 the extra processing time may become signi�cant� Thus	 if the array to
be sorted is quite large	 we can improve program e�ciency by eliminating a function call to swap
data elements� Similarly	 we may include the code for get maxpos�
 in selection sort�
�

void selection�sort�int x	
� int lim

� int i� eff�size� maxpos� tmp�

for �eff�size � lim� eff�size � �� eff�size��
 �

for �i � �� i � eff�size� i��

maxpos � x	i
 � x	maxpos
 " i � maxpos�

tmp � x	maxpos
�

x	maxpos
 � x	eff�size � �
�

x	eff�size � �
 � tmp�

�

�

������ Bubble Sort

An alternate way of putting the largest element at the highest index in the array uses an algorithm
called bubble sort� While this method is neither as e�cient	 nor as straightforward	 as selection
sort	 it is popularly used to illustrate sorting� We include it here as an alternate method�

Like selection sort	 the idea of bubble sort is to repeatedly move the largest element to the
highest index position of the array� As in selection sort	 each iteration reduces the e�ective size of
the array� The two algorithms di�er in how this is done� Rather than search the entire e�ective

��� CHAPTER ��� SORTING AND SEARCHING

�� File� select�c

This program implements selection sort�

��

�include �stdio�h�

�define MAX ��

void selection�sort�int x	
� int lim
�

int get�maxpos�int x	
� int lim
�

void print�aray�int x	
� int lim
�

main�

� int scores	MAX
 � ���� ��� ��� ��� ����

printf��Original array��n�
�

print�aray�scores� �
�

selection�sort�scores� �
�

printf��Sorted array��n�
�

print�aray�scores� �
�

�

�� Selection sort function for an array x	
 with lim elements� ��

void selection�sort�int x	
� int lim

� int eff�size� maxpos� tmp�

for �eff�size � lim� eff�size � �� eff�size��
 �

maxpos � get�maxpos�x� eff�size
�

tmp � x	maxpos
�

x	maxpos
 � x	eff�size � �
�

x	eff�size � �
 � tmp�

�

�

�� Function returns the index of the largest element in the array x	
� ��

int get�maxpos�int x	
� int eff�size

� int i� maxpos � ��

for �i � �� i � eff�size� i��

maxpos � x	i
 � x	maxpos
 " i � maxpos�

return maxpos�

�

�� Function prints an integer array of size lim� ��

void print�aray�int x	
� int lim

� int i�

for �i � �� i � lim� i��

printf���d �� x	i

�

�

Figure ���
� Sorting an array using Selection Sort

����� IMPROVING SEARCH � SORTING THE DATA ���

array to �nd the largest element	 bubble sort focuses on successive adjacent pairs of elements in
the array	 compares them	 and either swaps them or not� In either case	 after such a step	 the
larger of the two elements will be in the higher index position� The focus then moves to the next
higher position	 and the process is repeated� When the focus reaches the end of the e�ective array	
the largest element will have �bubbled� from whatever its original position to the highest index
position in the e�ective array�

For example	 consider the array�
	�	 ��	 ��	 ��	 ��	 ��
In the �rst step	 the focus is on the �rst two elements �in bold� which are compared and

swapped	 if necessary� In this case	 since the element at index � is larger than the one at index �	
no swap takes place�

��	 ��	 ��	 ��	 ��	 ��
Then the focus move to the elements at index � and � which are compared and swapped	 if

necessary� In our example	
� is larger than �� so the two elements are swapped� The result is
that the largest of the �rst three elements is now at index ��

��	 ��	 ��	 �		 ��	 ��
The process is repeated until the focus moves to the end of the array	 at which point the largest

of all the elements ends up at the highest possible index� The remaining steps and result are�
��	 ��	 ��	 ��	 ��	 ��
��	 ��	 ��	 ��	 ��	 ��

��	 ��	 ��	 ��	 ��	
�
The largest element has bubbled to the top index of the array� In general	 a bubble step is

performed by the loop�

for �k � �� k � eff�size � �� k��

if �x	k
 � x	k � �

swaparay�x� k� k � �
�

The loop compares all adjacent elements at index k and k � �� If they are not in the correct
order	 they are swapped� One complete bubble step moves the largest element to the last position	
which is the correct position for that element in the �nal sorted array� The e�ective size of the
array is reduced by one and the process repeated until the e�ective size becomes one� Each bubble
step moves the largest element in the e�ective array to the highest index of the e�ective array�

The code implementing this algorithm is the function	 bubblesort�
 shown in Figure �����
The function repeats bubble steps	 using the function bubblemax�
	 as many times as the size of
the array� This function is passed the array name and the size of the e�ective array� The size of
the e�ective array is the original size reduced by one after each step� Thus	 if the initial size of
the array to be sorted is lim	 the size of each successive e�ective array is lim	 lim ��	 lim � �	
etc� We have included a debug statement in bubblesort�
 to trace the bubble process after each
bubble step� The function	 bubblemax�
	 compares adjacent elements of an array of the speci�ed
size in sequence and swaps them if necessary� The function is shown in Figure ���� together with
the function	 swaparay�
 to swap elements in an array� All these functions are included in �le	
sortsrch�c	 and their prototypes are included in �le	sortsrch�h	 also shown in the Figure� It
should be clear that bubble sort is not as e�cient as selection sort� There is a great deal of
swapping required in bubble sort to �bubble� the largest element to the highest index
 where in
selection sort	 it is done by a single swap� On the other hand	 if the data is mostly sorted	 then
bubble sort can be made more e�cient�

��� CHAPTER ��� SORTING AND SEARCHING

�� File� sortsrch�c � continued ��

�� Sorts an array x of size lim using bubble sort� ��

void bubblesort�int x	
� int lim

� int i�

for �i � �� i � lim� i��

� bubblemax�x� lim � i
� �� effective array size is lim � i ��

�ifdef DEBUG �� debug statement ��

printf��Effective array of size �d� �n�� lim � i
�

pr�aray�line�x� lim � i
�

�endif

�

�

Figure ����� Code for bubble sort

�� File� sortsrch�c � continued ��

�� bubbles the next largest element through the array x ��

void bubblemax�int x	
� int eff�size

� int k�

for �k � �� k � eff�size � �� k��

if �x	k
 � x	k � �

swaparay�x� k� k � �
�

�

�� File� sortsrch�c � continued ��

�� swaps elements i and j of array x ��

void swaparay�int x	
� int i� int j

� int temp�

temp � x	i
�

x	i
 � x	j
�

x	j
 � temp�

�

�� File� sortsrch�h � continued ��

void bubblesort�int x	
� int lim
�

void bubblemax�int x	
� int eff�size
�

void swaparay�int x	
� int i� int j
�

Figure ����� Code for bubblemax�

����� IMPROVING SEARCH � SORTING THE DATA ���

�� File� bsrtaray�c

Other Source Files� sortsrch�c

Header Files� sortsrch�h

This program uses bubble sort to sort an array of

integers� It prints the unsorted and the sorted

arrays� It also prints a trace at each bubble step to

show the bubble process�

��

�include �stdio�h�

�define DEBUG

�include �sortsrch�h�

main�

� int id	
 � ���� ��� ��� ��� ��� ����

printf�����Bubble Sort����n�n�
�

printf��Unsorted array� �n�
�

pr�aray�line�id� �
�

bubblesort�id� �
�

printf��Sorted array� �n�
�

pr�aray�line�id� �
�

�

Figure ����� Driver to test bubble sort

To illustrate the operation of bubble sort	 we now write a program driver to exercise bubble sort
shown in Figure ����� It uses bubblesort�
 on the same array used in our search example above�
The initialized unsorted array is printed
 then the array is sorted and printed� Each bubble step is
explicitly shown by a debug statement� Note that DEBUG is de�ned during program development
and removed when the program is debugged�

Sample Session�

���Bubble Sort���

Unsorted array�

�� �� �� �� �� ��

Effective array of size ��

�� �� �� �� �� ��

Effective array of size ��

�� �� �� �� ��

��� CHAPTER ��� SORTING AND SEARCHING

�� File� sortsrch�c � continued ��

�� Bubble sort in a single function ��

void bsrtfnc�int x	
� int lim

� int i� k� temp�

for �i � �� i � lim� i��
 �

for �k � �� k � lim � i � �� k��

if �x	k
 � x	k � �

 �

temp � x	k
�

x	k
 � x	k��
�

x	k��
 � temp�

�

�ifdef DEBUG

printf��Effective array of size �d� �n�� lim � i
�

pr�aray�line�x� lim � i
�

�endif

�

�

�� File� sortsrch�h � continued ��

void bsrtfnc�int x	
� int lim
�

Figure ������ Code for one function bubble sort

Effective array of size ��

�� �� �� ��

Effective array of size ��

�� �� ��

Effective array of size ��

�� ��

Effective array of size ��

��

Sorted array�

�� �� �� �� �� ��

There are several ways to improve the bubble sort algorithm� First	 a single function should
incorporate the entire algorithm �Figure ������� The time overhead of a function call in a loop
can be quite large if the array is large�

Next	 a minor point� since an array of one element is already sorted	 at most n � � bubbling

����� IMPROVING SEARCH � SORTING THE DATA ���

�� File� sortsrch�c � continued ��

�� Bubble sort function which terminates if an array is sorted� ��

�include �tfdef�h� �� defines TRUE and FALSE ��

void bsort�int x	
� int lim

� int i� k� temp� swap � TRUE�

for �i � �� swap i � lim � �� i��

� swap � FALSE�

for �k � �� k � lim � i � �� k��

if �x	k
 � x	k � �

� temp � x	k
�

x	k
 � x	k��
�

x	k��
 � temp�

swap � TRUE�

�

�ifdef DEBUG

printf��Effective array of size �d� �n�� lim � i
�

pr�aray�line�x� lim � i
�

�endif

�

�

�� File� sortsrch�h � continued ��

void bsort�int x	
� int lim
�

Figure ������ An improved bubble sort

steps are needed for an array of size n� The �rst for loop need be executed no more than lim

� � times� More important	 if the entire array is sorted at some time in the process	 no further
processing is needed� An array is sorted if no elements are swapped in a bubble step� We will use
a �ag to keep track of any swapping� Figure ����� shows the revised code�

We include a �le	 tfdef�h	 that de�nes TRUE and FALSE� In the function	 we use a �ag	 swap	
to keep track of any swapping in the bubble step� For each bubble step	 we initially assume swap
is FALSE� If there is any swapping in the bubble step	 we set the �ag to TRUE� The sort process
repeats as long as swap is TRUE� To get the process started	 swap is initialized to TRUE�

These improvements may be important for large arrays� If an array is sorted after the �rst
few steps	 the process can be terminated with a saving in computation time� The program	
bsrtaray�c	 can be modi�ed to use the above bsort�
 function instead of bubblesort�
 function�
A sample output of such a modi�ed program is shown below�

Sample Session �Modi�ed bsrtaray�c��

���Bubble Sort���

��
 CHAPTER ��� SORTING AND SEARCHING

Unsorted array�

�� �� �� �� �� ��

Effective array of size ��

�� �� �� �� �� ��

Effective array of size ��

�� �� �� �� ��

Effective array of size ��

�� �� �� ��

Effective array of size ��

�� �� ��

Sorted array�

�� �� �� �� �� ��

Note that the process stops as soon as the e�ective array of size � is found to be sorted� If the
original data is almost sorted	 then bubble sort can be e�cient�

������ Insertion Sort

The two sorting algorithms we have looked at so far are useful when all of the data is already
present in an array	 and we wish to rearrange it into sorted order� However	 if we are reading the
data into an array one element at a time	 we can take another approach � insert each element
into its sorted position in the array as we read it� In this way	 we can keep the array in sorted
form at all times� This algorithm is called inertion sort�

With this idea in mind	 Let us see how the algorithm would work� If the array is empty	 the
�rst element read is placed at index zero	 and the array of one element is sorted� For example	 if
the �rst element read is ��	 then the array is�

��� "

We will use the symbol	 "	 to indicate that the rest of the array elements contain garbage� Once
the array is partially �lled	 each element is inserted in the correct sorted position� As each element
is read	 the array is traversed sequentially to �nd the correct index location where the new element
should be placed� If the position is at the end of the partially �lled array	 the element is merely
placed at the required location� Thus	 if the next element read is ��	 then the array becomes�

��� ��� "

However	 if the correct index for the element is somewhere other than at the end	 all elements
with equal or greater index must be moved over by one position to a higher index� Thus	 suppose
the next element read is ��� The correct index for this element in the current array is zero� Each
element with index zero or greater in the current partial array must be moved by one to the next
higher position� To shift the elements	 we must �rst move the last element to its �unused� higher
index position	 then	 the one next to the last	 and so on� Each time we move an element we

����� IMPROVING SEARCH � SORTING THE DATA ���

leave a �hole� so we can move of the adjoining element	 and so on� Thus	 the sequence of moving
elements for our example is�

��� ��� "� "

��� "� ��� "

"� ��� ��� "

The index zero is now vacant	 and the new element	 ��	 can be put in that position�

��� ��� ��� "

The process repeats with each element read in until the end of input� So	 if the next element
is ��	 we would traverse from the beginning of the array until we �nd larger than �� or until we
reach the end of the �lled part of the array� In this case	 we reach the end of the array	 and insert
���

��� ��� ��� ��� "

Let us develop the algorithm in more detail by observing how we insert a new item	 ��� The
correct position is found by traversing the partial array as long as the new item is greater than
the array element� In this case	 the array traversal stops at index �	 since the element at index
�	 namely ��	 is grater than the new element	 ��� In general	 the following loop �nds the correct
position in an array	 aray	 for the new item� Notice we compare the index	 i	 with the variable	
freepos	 whose value is now �	 to know when we have reached the next free position in the array�

for �i � �� i � freepos item � aray	i
� i��

�

When this loop terminates	 in our case	 the variable	 i	 will be �� Next	 elements from index	i���	
to index freepos��� are moved over one position� The highest indexed element must be moved
�rst	 then the next highest index	 and so on� The following loop moves all elements	 with index
greater than or equal to i	 in a correct order�

for �k � freepos� k � i� k��

aray	k
 � aray	k � �
�

When this loop terminates	 the loop counter	 k	 will be equal to i	 which is the index of the �hole�
created in the array�

��� ��� "� ��� ��

Finally	 the new item can be inserted at index	 i� Figure ����� shows the complete function for
inserting one new element in a sorted array	 given the array	 the new item	 and the next free
position �which	 incidentally	 is the current size of the array��

The function traverses the partial array until it �nds either that item is less than or equal to
the array element or that the array is exhausted� If the array is exhausted	 the second loop is not
executed since i �� freepos� In this case	 the item is merely inserted at the correct position�
Otherwise	 elements at and above index	 i	 are moved over one position	 and the new element is
inserted at the correct index�

We are now ready to implement insertion sort� The program logic is simple�

��� CHAPTER ��� SORTING AND SEARCHING

�� File� sortsrch�h � continued ��

void insert�sorted�int aray	
� int item� int freepos
�

�� File� sortsrch�c � continued ��

�� Function inserts item in sorted order in array aray� Freepos

is the next free pos� in the array�

��

void insert�sorted�int aray	
� int item� int freepos

� int i� k�

i � ��

�� find the correct pos� ��

for �i � �� i � freepos item � aray	i
� i��

�

for �k � freepos� k � i� k��
 �� move elements ��

aray	k
 � aray	k � �
�

aray	i
 � item� �� insert new item ��

�

Figure ������ Code for inserting and element

Repeat the following until end of input�

read a number�

insert the number read into the array in sorted order�

if the array is full� break out of loop�

The program terminates after a printing of the sorted array� The program uses the above func�
tion	 insert sorted�
	 to insert each number in sorted order into the array	 and a function	
pr aray line�
 of Figure ����	 to print the array� These functions are included in �le	 sortsrch�c�
The program driver is shown in Figure ������ Notice	 we increment the number of elements in the
array in each call to insert sorted�
	 since we have added a new element to the array� We have
included a debug statement to print out the partial array at each step� The input is terminated
either when an end of �le is reached or when the array becomes full�

Sample Session�

���Insertion Sort���

Type numbers to be sorted� EOF to quit

��

��

��

�� ��

����� IMPROVING SEARCH � SORTING THE DATA ���

�� File� insort�c

Other Source Files� sortsrch�c

Header Files� sortsrch�h

Program uses input to fill a float array in sorted order�

��

�include �stdio�h�

�define MAX ���

�define DEBUG

�include �sortsrch�h�

main�

� int x� y	MAX
�

k� �� no� of items in an array ��

printf�����Insertion Sort����n�n�
�

printf��Type numbers to be sorted� EOF to quit�n�
�

k � ��

while �scanf���d�� x
 !� EOF
 �

insert�sorted�y� x� k��
�

if �k �� MAX
 �

printf��Array full�n�
�

break�

�

�ifdef DEBUG

pr�aray�line�y� k
�

�endif

�

printf��SORTED ARRAY�n�
�

pr�aray�line�y� k
�

�

Figure ������ Driver for Insertion Sort

��� CHAPTER ��� SORTING AND SEARCHING

��

�� �� ��

��

�� �� �� ��

�

�� �� �� �� ��

��

�� �� �� �� �� ��

	D

SORTED ARRAY

�� �� �� �� �� ��

Insertion sort can be adapted to sorting an existing array� Each step works with a sub�array
whose e�ective size increases from two to the size of the array� The element at the highest index
in the sub�array is inserted into the current sub�array	 the e�ective size is increased	 etc� �see
Problem ���

���� Binary Search

As we saw earlier	 the linear search algorithm is simple and convenient for small problems	 but
if the array is large and�or requires many repeated searches	 it makes good sense to have a more
e�cient algorithm for searching an array� Now that we know how to sort the elements of an array	
we can make use of that ordering to make our search more e�cient� In this section	 we will present
and implement the binary search algorithm	 a relatively simple and e�cient algorithm�

The algorithm is easily explained in terms of searching a dictionary for a word� In a dictionary	
words are sorted alphabetically� For simplicity	 let us assume there is only one page for all words
starting with each letter� Let us assume we wish to search for a word starting with some particular
letter�

We open the dictionary at some midway page	 let us say a page on which words start with M�
If the value of our letter is M	 then we have found what we are looking for and the word is on the
current page� If the value of our letter is less than M	 we know that the word would be found in
the �rst half of the book	 i�e� we should search for the word in the pages preceding the current
page� If the value of our letter is greater than M	 we should search the pages following the current
page� In either case	 the e�ective size of the dictionary to be searched is reduced to about half the
original size� We repeat the process in the appropriate half	 opening to somewhere in the middle
of that and checking again� As the process is repeated	 the e�ective size of the dictionary to be
searched reduces by about half at each step until the word is found on a current page�

Binary search essentially follows this approach� For example	 given a sorted array of items	
say�

��� ��� ��� ��� ��� ��

����� BINARY SEARCH ���

�� File� sortsrch�c � continued ��

�� Function uses binary search to search for item in the array y	
� ��

int binsrch�int y	
� int lim� int key

� int low� mid� high � lim � ��

low � ��

while �low �� high
 � �� Is the array exhausted" ��

mid � �low � high
 � �� �� If not� find middle index ��

if �key �� y	mid

 �� Is the key here" ��

return�mid
� �� If so� return index� ��

else if �key � y	mid

 �� else if key is smaller� ��

high � mid � �� �� reduce the high end� ��

else

low � mid � �� �� otherwise� increase low ��

�

return���
� �� Not found� return �� ��

�

Figure ������ Code for Binary Search

suppose we wish to search for the position of an element equal to x� We will search the array
which begins at some low index and ends at some high index� In our case the low index of the
e�ective array to be searched is zero and the high index is �� We can �nd the approximate midway
index by integer division �low � high
 � �	 i�e� �� We compare our value	 x with the element
at index �� If they are equal	 we have found what we were looking for
 the index is �� Otherwise	
� x is greater then the item at this index	 our new e�ective search array has a low index value
of � and the high index remains unchanged at �� If x is less than the element	 the new e�ective
search array has a high index of � and the low index remains at zero� The process repeats until
the item is found	 or there are no elements in the e�ective search array� The terminating condition
is found when the low index exceeds the high index� The algorithm is implemented as a function
in Figure ������

We use the binsrch�
 function in an example program which repeatedly searches for numbers
input by the user� For each number	 it either gives the index where it is found or prints a message
if it is not found� An array in sorted form is initialized in the declaration� The code for this driver
is shown in Figure �����

Sample Session�

���Binary Search���

The array is�

�� �� �� �� �� ��

��� CHAPTER ��� SORTING AND SEARCHING

�� File� bsrcharay�c

Other Source Files� sortsrch�c

Header Files� sortsrch�h

Program uses binary search to search a sorted array of numbers�

��

�include �stdio�h�

�define MAX ���

�define DEBUG

�include �sortsrch�h�

main�

� int i� x� y	MAX
 � ���� ��� ��� ��� ��� ����

int k � �� �� no� of items in the array y	
 ��

printf�����Binary Search����n�n�
�

printf��The array is��n�
�

pr�aray�line�y� k
�

printf��Type a number� EOF to quit� �
�

while �scanf���d�� x
 !� EOF
 �

i � binsrch�y� k� x
�

if �i �� �

printf���d found at array index �d�n�� x� i
�

else

printf���d not found in array�n�� x
�

printf��Type a number� EOF to quit� �
�

�

�

Figure ������ Test Driver for Binary Search

����� AN EXAMPLE � PAYROLL DATA RECORDS ���

Type a number� EOF to quit� ��

�� found at array index �

Type a number� EOF to quit� ��

�� not found in array

Type a number� EOF to quit� ��

�� not found in array

Type a number� EOF to quit� ��

�� not found in array

Type a number� EOF to quit� ��

�� found at array index �

Type a number� EOF to quit� ��

�� found at array index �

Type a number� EOF to quit� 	D

���� An Example � Payroll Data Records

So far	 in the previous sections	 we have seen how to search and sort an array of integers� In this
section we apply the sort and search methods to our database of payroll records� The data items
in a payroll record are id number	 hours worked	 rate of pay	 regular and overtime pay� Our task
is to write an interactive program which displays the pay record for a given individual�

We saw how we could implement such a database in Chapter �� There	 the data record for a
speci�c id is stored at the same index in several di�erent arrays as shown in Figure ����
� In our
application	 we will search the database to �nd the payroll record given a speci�c id number as
the key� Therefore	 we will need to sort the database by the id number �eld� When we search for
the key	 we will get the index for the element	 if any	 which matches the sought after id� With
that index in id number array	 we can access the remaining information for that data record�

As we saw in the previous section	 when we sort an array	 we rearrange the positions of the
array elements� When we sort data records	 we must rearrange the positions of all �elds of the
data records
 i�e� if a data record is spread over several arrays	 we must rearrange the elements
of all of these arrays in an identical manner� In this way	 we will still be able to access a data
record using the index determined by a key� To sort the database	 we can use either selection sort
or bubble sort for our task� We will assume that the input data is mostly sorted	 requiring little
rearrangement	 and therefore will choose to use bubble sort� This is a reasonable assumption since
records are usually kept in a �le in sorted order� Only new records entered may be out of place�
We will modify bubblesort�
 of the last section to handle data records�

The input data record is spread over three arrays
 namely	 id	
	 hrs	
	 and rate	
� Since
we are sorting records by id numbers	 the decision whether to swap records is determined by the
elements of the id	
 array
 however	 if we swap elements of id	
	 we must also swap corresponding

��� CHAPTER ��� SORTING AND SEARCHING

hrs

����

rate

����

regular

�����

overtime

���

id
index �

index �

index i

index MAX��

�

Figure ����
� A Data Record Across Arrays

elements of the other two arrays�
The code for the modi�ed sort function	 called sortdata�
	 that sorts input payroll records

is shown in Figure ������ We write the code in the �le payutil�c and add its prototype in
payutil�h� These �les have other payroll functions and prototypes developed in Chapter �	 in�
cluding� getdata�
which reads the input data	 calcpay�
 which calculates regular and overtime
pay	 and printdata�
 which prints the pay records in a table� We also use the �le tfdef�h that
de�nes TRUE and FALSE�

We can now use the above function in a payroll program that sorts the input data before
processing it� The main purpose of this program is to test the operation of creating a sorted
database of records before later modi�cations to the program� The driver is very simple and
consists of functions that get data	 sort data	 calculate pay	 and print data as seen in Figure ������
Notice we have performed the calculate pay step after the database has been sorted	 as the arrays
containing this data are not rearranged by our sort function� The sample session is shown below�

Sample Session�

���Payroll Program � Sorted Data���

ID �zero to quit�� �

Hours Worked� ��

Rate of Pay� �

ID �zero to quit�� �

Hours Worked� ��

Rate of Pay� ��

ID �zero to quit�� ��

Hours Worked� ��

Rate of Pay� �����

����� AN EXAMPLE � PAYROLL DATA RECORDS ���

�� File� payutil�c � continued ��

�include �tfdef�h�

void sortdata�int id	
� float hrs	
� float rate	
� int lim

� int i� k� temp� swap � TRUE�

float ftmp�

for �i � �� swap i � lim � �� i��
 �

swap � FALSE�

for �k � �� k � lim � i � �� k��

if �id	k
 � id	k � �

 �

temp � id	k
�

id	k
 � id	k � �
�

id	k � �
 � temp�

ftmp � hrs	k
�

hrs	k
 � hrs	k � �
�

hrs	k � �
 � ftmp�

ftmp � rate	k
�

rate	k
 � rate	k � �
�

rate	k � �
 � ftmp�

swap � TRUE�

�

�

�

�� File� payutil�h � continued ��

void sortdata�int id	
� float hrs	
� float rate	
� int lim
�

Figure ������ Code for sortdata�
 and header �le entry

��
 CHAPTER ��� SORTING AND SEARCHING

�� File� paysrt�c

Other Source Files� payutil�c

Header Files� payutil�h

Program calculates payroll data for a number of id#s� It

gets data� sorts data� calculates pay� and prints data for

all id#s�

��

�include �stdio�h�

�include �payutil�h�

�define MAX ��

main�

� int i� n � �� key� id	MAX
�

float hrs	MAX
� rate	MAX
� regpay	MAX
� overpay	MAX
�

printf�����Payroll Program � Sorted Data����n�n�
�

n � getdata�id� hrs� rate� MAX
�

sortdata�id� hrs� rate� n
�

calcpay�hrs� rate� regpay� overpay� n
�

printdata�id� hrs� rate� regpay� overpay� n
�

�

Figure ������ Test driver for sortdata�

����� AN EXAMPLE � PAYROLL DATA RECORDS ���

ID �zero to quit�� �

Hours Worked� ��

Rate of Pay� ��

ID �zero to quit�� �

���PAYROLL� FINAL REPORT���
ID HRS RATE REG OVER TOT

� ����� ���� ������ ���� ������

� ����� ����� ������ ���� ������

$ ����� ����� ������ ������ ������

�� ����� ����� ������ ����� ������

The program �le	 paysrt�c	 containing the driver	 and the source �le	 payutil�c	 with the
new function	 sortdata�
 added	 must be compiled and linked� Observe that the input is almost
sorted by id number
 only the last record is out of place� Bubble sort can sort this data in one
pass�

Having observed that the database is correctly sorted	 we can now complete the task to search
for a speci�c record to display� We will use binary search on the data in sorted order� The search
for an id number in the array	 id	
	 returns an index if it is found	 and returns �� otherwise� If
the index is non�negative	 the same index is used to access the rest of the data record spread over
the other arrays� We modify the above test program to read the data records and calculate the
pay	 then repeatedly call binsrch�
 to return the index of a data record for a speci�ed id number�
If a data record exists	 it is printed by printrec�
� We have already implemented the function
binsrch�
 and included it in the �le	 sortsrch�c� We will soon write printrec�
� The program
that implements our task is shown in Figure ������

The �rst part of the program reads data	 sorts data	 and calculates pay� The second part of
the program reads an id number and calls binsrch�
 to locate its index in the array� If the index
is non�negative	 the program uses a function	 printrec�
	 to print a data record at that index� If
the index is negative	 the program prints an error message� The function	 printrec�
	 is shown
in Figure ����� and added to the �le	 payutil�c�

A sample session for the search part of the program is shown below� The input data is assumed
identical to that in the sample session for the previous program paysrt�c�

���Payroll Program � Search Data���

Type an id �zero to quit�� �

���PAYROLL RECORD FOR ID $���

ID HRS RATE REG OVER TOT

$ ����� ����� ������ ������ ������

Type an id �zero to quit�� ��

Error � no such id

Type an id �zero to quit�� �

���PAYROLL RECORD FOR ID ����

��� CHAPTER ��� SORTING AND SEARCHING

�� File� paysrch�c

Other Source Files� payutil�c� sortsrch�c

Header Files� payutil�h� sortsrch�h

Program sorts and calculates payroll data for a number of id#s� It

then uses sequential search to find and print data records for

specified id numbers�

��

�include �stdio�h�

�include �payutil�h�

�include �sortsrch�h�

�define MAX ��

main�

� int i� n � �� key� id	MAX
�

float hrs	MAX
� rate	MAX
� regpay	MAX
� overpay	MAX
�

printf�����Payroll Program � Search Data����n�n�
�

n � getdata�id� hrs� rate� MAX
�

sortdata�id� hrs� rate� n
�

calcpay�hrs� rate� regpay� overpay� n
�

printdata�id� hrs� rate� regpay� overpay� n
�

printf��Type an id �zero to quit�� �
�

while �scanf���d�� key
 !� EOF key !� �
 �

i � binsrch�id� n� key
�

if �i �� �

printrec�id� hrs� rate� regpay� overpay� i
�

else printf��Error � no such id�n�
�

printf��Type an id �zero to quit�� �
�

�

�

Figure ������ Code for searching the database

����� POLYMORPHIC DATA TYPE ���

�� File� payutil�c � continued ��

�� Function prints a single data record at a specified index� ��

void printrec�int id	
� float hrs	
� float rate	
�

float reg	
� float over	
� int i

�

printf�����PAYROLL RECORD FOR ID �d����n�n�� id	i

�

printf�����s���s���s���s���s���s�n�� �ID�� �HRS��

�RATE�� �REG�� �OVER�� �TOT�
�

printf�����d�����f�����f�����f�����f�����f�n��

id	i
� hrs	i
� rate	i
� reg	i
� over	i
�

reg	i
 � over	i

�

�

�� File� payutil�h � continued ��

void printrec�int id	
� float hrs	
� float rate	
�

float reg	
� float over	
� int i
�

Figure ������ Code for printrec�
 and header �le entry

ID HRS RATE REG OVER TOT

� ����� ���� ������ ���� ������
Type an id �zero to quit�� �

���� Polymorphic Data Type

Very often in programs	 a generic operation must be performed on data of di�erent types� For
example	 in our bubble sort algorithm for the payroll records	 when elements were found out of
order in the id	
 array	 we needed to swap the integer elements in that array as well as the �oat
elements in the hrs	
 and rate	
 arrays� If we decided to implement this swapping operation
as a function	 we would need to write two functions� one to swap integers	 and another to swap
�oating point values
 even though the algorithm for swapping is the same in both cases� �We
wrote a swap function for integers using pointers in Chapter
��

The C language provides a mechanism which allows us to write a single swapping function
which can be used on any data type� This mechanism is called a polymorphic data type	 i�e� a data
type which can be transformed to any distinct data type as required� An item of polymorphic
data type is created by the use of a generic pointer� A generic pointer is simply a byte address
without an associated type� In other words	 a generic pointer does not point to an object of a
speci�c type
 it just points to some location in the memory of the computer� In ANSI C	 a generic
pointer is declared as a void pointer �in old C	 a generic pointer is a char pointer�� It is only when
the actual operations must be performed on the data that generic pointers are cast to pointers to
speci�c types and dereferenced�

Using the concept of a generic pointer	 we can assume the following prototype for a function

��� CHAPTER ��� SORTING AND SEARCHING

�� File� payutil�c � modified ��

�include �tfdef�h�

void sortdata�int id	
� float hrs	
� float rate	
� int lim

� int i� k� temp� swap � TRUE�

float ftmp�

for �i � �� swap i � lim � �� i��
 �

swap � FALSE�

for �k � �� k � lim � i � �� k��

if �id	k
 � id	k � �

 �

gen�swap��void �
�id � k
� �void �
�id � k � �
� #d#
�

gen�swap��void �
�hrs � k
� �void �
�hrs � k � �
� #f#
�

gen�swap��void �
�rate � k
� �void �
�rate � k � �
� #f#
�

swap � TRUE�

�

�

�

Figure ������ Modi�ed code for sortdata�
 using generic swap

to swap two data items of any type�

void gen�swap�void � x� void � y� char type
�

Here	 x and y are generic pointers to two data items	 and type speci�es the type of the data
using a single character� With this information	 we can now rewrite the function	 sortdata�
	 in
the �le	 payutil�c using gen swap to swap all data items� The code is shown in Figure ������
Notice in the calls to gen swap�
 we cast the pointers to the integer array elements �id � k and
id � k � �� to void pointers� Similarly	 the pointers to the �oat data items in the hrs	
 and
rate	
 arrays are cast to void pointers� We pass the character constants #d# for integer	 or #f#
for �oat to tell gen swap�
 the type of the data it is to swap�

We can now write the code for gen swap�
 as seen in Figure ������ We have declared two
temporary variables	 temp and ftmp to hold an integer or �oat value	 respectively when we do the
swapping� The variable	 type is used to switch to the appropriate code sequence to swap the two
data items�

If we made these modi�cations to payutil�c and recompiled our program	 it would behave
exactly as it did in the last section� Of course	 as we stated earlier	 we may not want to use
a function to perform the swap in bubble sort because of the overhead in calling and returning
from a function� As another example of the use of the polymorphic data type	 consider writing a
function that will print an array	 regardless of type	 with �ve elements per line� We may have an
array of integers and an array of �oats to be printed and wish to use the same function to format
the lines of output� Figure ����� shows a driver program and the function	 praray�
�

The function calls to praray�
 pass the array pointers after �rst casting them to generic
pointer types� In the function	 praray�
	 we use the array index to determine when a new line is

����� POLYMORPHIC DATA TYPE ���

�� File� payutil�c � continued ��

void gen�swap�void � x� void � y� char type

� int temp�

float ftmp�

switch�type

� case #d# � temp � ��int �
x�

��int �
x � ��int �
y�

��int �
y � temp�

return�

case #f# � ftmp � ��float �
x�

��float �
x � ��float �
y�

��float �
y � ftmp�

return�

default � printf��Error in gen�swap� �c not a legal type�n��type
�

�

�

Figure ������ Code for gen swap

needed� Since we wish to print �ve elements to a line	 a newline is printed every time the index	
i	 is a multiple of
	 i�e� i � � is zero� When the index i is zero	 no newline is needed�

The void pointer	 y	 points to the array and the type value is a character	 #d# for integers	
and #f# for �oat	 as before� Each element of the array is printed by means of a switch statement�
The switch cases are selected by the type of the array passed� If the type is #d#	 a decimal integer
is printed
 if the type is #f#	 a �oat is printed� If desired	 the function can be extended to handle
other types as well� Let us examine the printing of an i

th element of an integer array� For a type
#d#	 the argument expression in printf�� is�

���int �
 y � i

The void pointer	 y	 is �rst cast to the desired type	 i�e� int �
 then	 the int � is increased
by i so as to point to the i

th element of an integer array� This pointer is �nally dereferenced to
access the ith element of the array� Thus	 printf�
 prints the value of the ith element of an integer
array� Similarly	 a �oat array element is printed out by �rst casting the generic pointer to a �oat
pointer� A sample output is shown below�

���Generic Pointers and Polymorphic Data Types���

Integer array is�

�� �� �� �� ��

Float array is�

��������� ��������� ��������� $��������

Use of polymorphic data types makes for compact programs
 however	 their use is not recom�
mended for beginning programmers� For the most part	 we will not use them in this text�

��� CHAPTER ��� SORTING AND SEARCHING

�� File� genptr�c

Program shows the use of generic pointers to implement a

polymorphic data type� An integer and a float array are printed

out by the same primitive function praray�
�

��

�include �stdio�h�

void praray�void � y� int lim� char type
�

main�

� int x	
 � ���� ��� �� ���� ����

float y	
 � ������� ������ ������ $������

printf�����Generic Pointers and Polymorphic Data Types����n�n�
�

printf��Integer array is��n�
�

praray��void �
 x� �� #d#
�

printf��Float array is��n�
�

praray��void �
 y� �� #f#
�

�

�� Function prints an array of any type� int or float� ��

void praray�void � y� int lim� char type

� int i�

for �i � �� i � lim� i��
 �

if �i !� � i � � �� �
 �� add a newline every �th item ��

printf���n�
�

switch�type
 �

case #d#� printf���d �� ���int �
 y � i

�

break�

case #f#� printf���f �� ���float �
 y � i

�

break�

default� printf��Error in printing array�n�
�

�

�

printf���n�
�

�

Figure ������ Code for printing arbitrary arrays

���
� COMMON ERRORS ���

���	 Common Errors

�� In insertion sort	 the elements are shifted incorrectly� Shift the highest index element �rst	
then the next highest	 and so forth�

�� The argument in binary search that speci�es the high index is incorrect� If the size of the
array is passed as the highest index	 there is a problem� If the size of the array is n	 the
index n is outside the array� The argument should be n � ��

�� Generic pointers should be used with care� In traditional C	 use char pointer instead of void
pointer�

���
 Summary

In this chapter we have developed algorithms for searching a collection of data for a speci�c
element	 called the key� We saw a simple algorithm	 linear search which started at the beginning
of the data	 and compared each element against the key until it was found	 or the data was
exhausted� However	 linear search is not very e�cient if the number of elements to search is large�
In order to develop more e�cient algorithms	 we need to take advantage of the order of the data�
Therefore	 we next discussed how we can arrange the elements in an array in a speci�ed order �
a process called sorting� We developed three sorting algorithms� selection sort	 bubble sort	 and
insertion sort� The �rst two of these are useful when all of the data is already stored in an array	
and insertion sort can be used to sort the data as it is being read into the array�

Once we have the data sorted	 we developed a more e�cient searching algorithm � binary

search� This algorithm worked by dividing the data in half	 and deciding in which half the key
would occur� With each step	 then	 we can eliminate half of the data from further consideration�

These searching and sorting techniques are general and may be applied to any type of data�
We used them in our payroll task to �nd individual payroll records in a database given an id as
the key�

Finally	 we discussed the use of the polymorphic data type	 or generic pointers to implement
a common operation that may be applied to data of di�erent types�

��� CHAPTER ��� SORTING AND SEARCHING

���� Exercises

Find and correct errors if any�

�� main�

� int x	��
�

x	��
 � ���� ��� ����

�

�� main�

� int x	��
�

x � ���� ��� ����

�

�� main�

� int i� x	��
�

for �i � �� i � ��� i��

x � ��

�

�� Should you use a function or a macro to swap values in bubble sort� Explain your reasons�

�� Bubble sort moves the largest value to the highest index� Modify the bubble sort code to
move the smallest element to the lowest index�

� Insertion sort inserts a new element into the array� Modify the insertion sort method to
apply it to an unsorted array with n elements� Do not use another array�

�� Modify the bubble sort to apply it to an array of characters housing a string� The number
of elements in the string are unknown	 but terminated by a NULL�

����� PROBLEMS ���

���� Problems

�� Write a function that sorts an array of integers in decreasing order�

�� Write a function that sorts an array of integers in either increasing or in decreasing order as
speci�ed by an argument�

�� Write a binary search function that searches an array of integers sorted in decreasing order�

�� Write a binary search function that searches an array of integers sorted in either increasing
or in decreasing order as speci�ed by an argument�

�� Write a function that uses insertion sort to sort an array of input numbers	 either in increasing
or in decreasing order�

� Write a function that uses insertion sort to sort an existing array of integers�

�� Write a program to read an array of integers from a �le� Write a function that takes two
arguments� low and high� Low and high specify the low and high indices of an e�ective
array� Function �nds indices for the maximum and the minimum elements in the speci�ed
e�ective array� Use the function with zero for low and the highest valid index for high� Print
the values of maximum and minimum�

�� Repeat the last problem	 but this time swap the largest element in the e�ective array with
the one at the high index	 say index n
 swap the smallest element with the one at the low
index�

�� Repeat the last problem	 but this time after the swap of the elements change the e�ective
array so low is � and high is n � �� Repeat the process so the largest and smallest elements
are found in the array from index � through n � �� Swap the next largest element with the
one at index n � �	 and swap the next smallest with the one at index �� The next swap
considers the array from index � through n � �	 etc until all elements of the array are in
increasing order� This is another way of sorting an array�

��� Compare the operations involved in the above sorting with that for bubble sort� What are
the approximate comparisons required to sort an array of n items by the two methods�

��� Write a menu driven program that allows the following commands� get data from a �le	 add
data	 delete data	 sort data	 search data	 save data to a �le	 help	 quit� Assume that data
records consist of id numbers and exam scores� Sorting must be done either by id numbers
or by exam scores and it must be either in ascending or descending order�

��� Repeat the last problem	 but get data uses insertion sort to read data in sorted form by id
numbers�

��� Write a program that reads integers into an array A� Use another array P of the same size
to store each index of the array A in the following way� The index in A with the smallest
element is stored at index � of P	 the index of the next smallest element in A is stored at
index � of P	 and so on� Print the array A	 and print the elements of A ordered in the
sequence given by each succeeding index stored in P�

��
 CHAPTER ��� SORTING AND SEARCHING

��� Repeat Problem ��	 but use the approach of Problem �� to sort the data�

��� Repeat Problem ��	 but use insertion sort to read data in sorted form by id numbers� The
sort command then uses approach of Problem �� to sort the data by exam scores�

�
� Compare the operations required for sorting in Problems �� and ���

��� Write a program to merge two sorted arrays A and B into a third array S as follows� Start
with initial index	 ia	 of the element to be merged from A and also the index	 ib	 of the
element from B� If the element from A is smaller than the element from B	 append that
element of A to the array S and increment ia
 if the element of B is smaller than that of
A	 add the element from B to S and increment ib� If they are equal	 add both elements to
S and increment both ia	 ib� If either array is exhausted	 copy the elments from the other
array into S� Repeat until both arrays are exhausted� Print A	 B	 and S�

��� Develop a sort method using the merging of two arrays as in the last problem� Given an
array with � elements	 assume it is split into as many arrays as there are elements� Merge
each adjacent pair into � arrays of two elements each� Merge each pair again into � arrays of
� elements each� Finally	 merge the two into a sorted array� The method can be applied to
any array and is called merge sort method� Write a program that sorts an array by merge
sort�

��� Write a program that sorts the characters in a string�

��� Write a program that reads strings
 for each string compute the frequency of occurrence of
each character�

��� Write a program that reads text from a �le and computes cumulative frequency of occurrence
of each character�

��� Write a program that searches a string for a speci�ed character and returns the index of its
�rst occurrence�

��� Write a program that returns the �rst occurrence of a character in a string starting at some
speci�ed index�

��� Write a program to �nd all occurrences of a character in a string�

��� Write a program that replaces all the occurrences of a character in a string by another
character�

�
� Write a program that sorts characters in a string according to a di�erent order than that
of the ASCII values� Use a function to compare two characters and return whether one
is greater than	 equal to	 or less than the other� The function �rst converts all lower case
letters to upper case and then compares their ASCII values� The program sorts characters
ignoring case�

��� Write a sort program similar to the above problem for integers� Use a function that compares
the absolute values of two integers� The program sorts by absolute values�

����� PROBLEMS ���

��� Write a character sort program that uses a function	 cmpchrs�
	 to compare two characters
by an arbitrary criteria� Assume that an array stores all ASCII printable characters in an
assumed increasing order� vowels �rst	 consonants next	 digits next	 all others next� The
function	 cmpchrs�
	 looks up the corresponding indices of characters to compare characters�
The result of comparing the indices is returned by the function� The program sorts characters
in an order speci�ed by cmpchrs�
�

��� CHAPTER ��� SORTING AND SEARCHING

Chapter ��

String Processing

These days	 computers are not used only for processing numbers	 but	 as we have seen in previous
chapters	 they are also used for processing textual data� As we saw in Chapter �	 in C	 textual
data is represented using arrays of characters called a string� If we are to manipulate strings in
any reasonable way we must have several basic operations available to us� Since string is not a
basic type in C	 string operations must be developed as functions� A library of such functions
can then be used as a part of the language� In other words	 we can e�ectively treat string as
an abstract data type � once we have string operations written in function form� The Standard
Library provides a rich set of functions for performing operations on strings such as copying and
comparing them	 breaking strings up into parts	 joining them	 �nding substrings	 substituting one
string for another	 and so forth� In this chapter	 we will discuss such string processing using the
built�in library functions as well as look at how some of these functions can be written�

We begin the chapter by de�ning a user de�ned data type for strings and then use this new
type throughout� We then describe the library functions available for performing string operations	
including reading and writing strings	 copying a string and �nding its length	 comparing and joining
strings and converting the information in a string to other data types� We conclude the chapter
with several example programs using these string operations�

���� The Data Type STRING

Because a string is such a common data structure in programs	 it may be convenient to de�ne
it as its own data type� We can then de�ne functions to perform operations on operands of the
de�ned data type
 e�ectively treating the de�ned type as a new data type �an abstract data type��
As we have seen previously	 a string is implemented as an array of characters	 and an array is
implemented as a contiguous collection of cells and a pointer pointing to the beginning of the
block� The name of the array is associated with this pointer cell	 rather than with the data cells
themselves� When we pass an array to a function	 we pass this pointer to the array� So when
we are processing strings	 passing them to functions	 returning them as values	 we are handling
pointer values� Therefore	 we can de�ne a data type	 STRING	 as a pointer to a character as follows�

typedef char � STRING�

�To de�ne an abstract data type� we must de�ne a way to declare variables of that type together with operations

that can be performed on such data items� A full description of the concept of abstract data types is beyond the

scope of this text� however� the basic idea is presented here�

���

��� CHAPTER ��� STRING PROCESSING

We can then de�ne string variables in terms of the data type	 STRING�

STRING s� t�

The variables	 s and t	 are character pointers� We can access the characters in the string by
dereferencing the pointer or using array type indexing� But remember	 declaring a pointer type
only allocates space for the pointer
 it does not allocate cells for an array
 it does not initialize the
pointer� We cannot use a STRING variable to store a string of characters	 but merely to point to
a pre�allocated string� We must always declare a character array to store a string of characters	
and can then initialize a STRING variable to point to this array� STRING does not serve to allocate
memory for a string� As such	 the concept of abstract data type is not totally satis�ed by the
above type de�nition
 however	 with the above caveat	 we can otherwise treat it as such�

We illustrate the use of the STRING type by writing a rogram to read and print a string as
shown in Figure ����� Note	 in main�
	 a character array	 s	 is declared� The name of the array	 s	
is an �initialized� character pointer � the same as our type	 STRING	 and may therefore be passed
to the function our strprint�
 which expects a STRING argument� Notice	 we have placed the
typedef for STRING in a header �le	 strtype�h since it will be useful for other programs we will
write�

���� Library String Functions

With a data type de�ned	 we may now proceed to de�ne functions to implement the operations
on data of this type� As mentioned above	 the C built�in library provides a rich set of string
processing functions� We describe some of the more common ones here
 others are described in
Appendix C�

������ String I�O� gets�� and puts��

One of the �rst operations we may need for strings is the ability to read or write strings from the
standard input or to the standard output� For example	 if we had a task�

STR�� Read strings until end of �le	 convert each string to upper case	 and print the modi�ed
string�

we could easily write an algorithm for the task�

while not EOF� read a string

convert string to upper case

print string

To implement this algorithm	 we need three functions� read a string from standard input
stream	 write a string to standard output	 and convert a string to upper case� We have shown
crude versions of these �rst two functions in the previous	 section
 however	 the standard library
provides these operations as well� Library function	 gets�s
 reads a string from the standard
input into an array pointed to by s
 and	 puts�s
 writes a string pointed to by s to the standard
output� The prototypes for these functions	 declared in stdio�h	 are� �

STRING gets�STRING string
�

int puts�STRING string
�

