
����� LIBRARY STRING FUNCTIONS ���

�� File� strtype�c

This program illustrates the use of a type definition for strings�

��

�include �stdio�h�

�include �strtype�h�

�define SIZE 	

void our�strprint�STRING s
�

void our�strread�STRING s
�

main�

� char s�SIZE�� �� allocate space for a string ��

our�strread�s
� �� read a string ��

our�strprint�s
� �� print a string ��

�

�� Function reads a string from standard input���

void our�strread�STRING s
 �� declare a STRING type ��

�

while ���s � getchar�

 �� ��n�

s���

�s � NULL�

�

�� Function writes a string to standard output���

void our�strprint�STRING s
 �� declare a STRING type ��

�

while ��s
 �

printf���c�� �s
�

s���

�

printf���n�
�

�

�� File� strtype�h

This file contains the definition of type STRING

��

typedef char � STRING�

Figure ����� Program illustrating the STRING data type

��� CHAPTER ��� STRING PROCESSING

If reading is successful� gets�
 returns the pointer to the string� otherwise� it returns a NULL

pointer� i�e� a pointer whose value is zero� A returned value of NULL usually implies an end of
	le� When gets�
 reads a string� it reads the input characters until a newline is read� discards the
newline� appends a NULL character to the string� and stores the string where s points� Similarly�
puts�
 outputs the string� s� after stripping the NULL and appending a newline� It returns the
last character value output if successful� otherwise it returns EOF� Note� the arguments to these
functions and the return value from gets�
 are character pointers� i�e� equivalent to our STRING
data type� and we can consider them as such� The argument of gets�
 MUST be a string�
otherwise� the function attempts to store characters wherever the argument points� which can
create a possibly fatal error when the program executes�

We will write and use a function� ucstr�
� which converts a string to upper case� The whole
program is simple� it reads a string� converts it to upper case� and prints it� and is shown in
Figure ���� In the driver� the loop expression reads a line into s� if successful� the returned value
is a non
zero pointer� s� and the loop is executed� In the loop body� the string� s� is converted
to upper case� and printed� The function� ucstr�
� converts a string to upper case by traversing
the string and converting each character to upper case using library routine� toupper�
� which
returns the upper case version of its argument if it is a lower case letter� otherwise it returns the
argument unchanged�

Sample Session�

���String to Upper Case���

Type strings� EOF to terminate

Hello

HELLO

Pad ��A

PAD 	�A

good morning

GOOD MORNING

�D

The above program reads lines until end of 	le� As a slight variation on this task� sometimes
it is desirable to loop until a blank line is entered� Here is a loop that copies lines until a blank
line is entered�

while ��gets�s

puts�s
�

Assuming that a line is read successfully� gets�
 returns s� The expression� �gets�
� is the
same as �s� which is the 	rst character in the string� s� As long as the 	rst character of s has a
non
zero value� the loop continues� When the 	rst character is a NULL� the loop terminates� If a
blank line is entered by typing a RETURN� gets�
 reads an empty string and the loop terminates�

We can also use gets�
 in a menu driven program which requires the user to enter either
a single character or a command line� In our previous menu driven programs in Chapter �� we
saw that reading a single command character required that the keyboard bu�er be �ushed of the
newline character before reading the next command� If only one character is to be read� or if the
	rst character of a command line is su
cient to identify a command� then it is simpler to read the

����� LIBRARY STRING FUNCTIONS ���

�� FIle� ucstr�c

This program reads strings� converts them to upper case� and

prints them out�

��

�include �stdio�h�

�include �ctype�h� �� includes toupper�
 ��

�include �strtype�h�

�define SIZE 	

void ucstr�STRING t
�

main�

�

char s�SIZE�� �� allocate a string ��

printf�����String to Upper Case����n�n�
�

printf��Type strings� EOF to terminate�n�
�

while �gets�s

 �

ucstr�s
�

puts�s
�

�

�

�� Converts t to upper case string ��

void ucstr�STRING t

�

while ��t
 � �� loop until char is null ��

�t � toupper��t
� �� convert char �t to upper case ��

t��� �� point to next char ��

�

�

Figure ����� Program to read and print strings using gets�
 and puts�

��� CHAPTER ��� STRING PROCESSING

entire line using gets�
� which strips the newline character from the input line� and then examine
only the 	rst character of the input string� Here is a loop for a menu driven program driver�

printf��H�elp� Q�uit� D�isplay�n�
�

while �gets�s

 �

switch �toupper��s

 �

case �H�� help�
�

break�

case �Q�� exit�

�

case �D�� display�
�

break�

default� �

�

printf��H�elp� Q�uit� D�isplay�n�
�

�

The loop reads an input string� s� and passes the 	rst character of s� �s to toupper�
 which
converts it to upper case� One of the cases in the switch is selected and an appropriate function
is executed� The loop repeats until gets�
 returns end of 	le�

We may now use library functions� gets�
 and puts�
� in place of functions we have previously
written ourselves to read and write strings� Remember� gets�
 reads an entire line of input text
into a string� replacing the newline with a NULL� Likewise� puts�
 prints an entire NULL terminated
string� adding a newline at the end�

������ String Manipulation� strlen�� and strcpy��

As our next task� let us consider reading lines of text and 	nding the longest line in the input�
STRSAVE� Read text lines until end of 	le� save the longest line and print it�
Our approach is similar to the algorithm for 	nding the largest integer in a list of integers� We

save the current �guess� at the longest line in a string� and� as each new line is read� we compare
the length of the new line with that of the current longest line� If the length of the new line is
greater than that of the current longest� we will save the new line into the longest and proceed�
To begin� we initialize the longest line to an empty string� the shortest of all strings� Here is the
algorithm�

initialize longest to an empty string

while not EOF� read a line

if length of new line � length of current longest

save new line into longest

print longest

����� LIBRARY STRING FUNCTIONS ���

To implement this algorithm� we must consider how we can perform the required operations
on the strings holding the new line and the current longest line� We already know how to read
and write strings� we also need the operations of 	nding the length of a string and saving a string�
For the former task� the standard library provides a function�

int strlen�STRING s
�

which returns the length of a string�s� i�e� the number of characters in s excluding the termi

nating NULL�

For the second operation� we can consider the implementation of the maximum integer algo

rithm and how we saved the new maximum value � we used an assignment operator� However�
this will not work for strings� Remember� the string is implemented as a character pointer� If we
simply assigned one string variable to another� we would only be saving the pointer to the 	rst
string� not the string characters themselves� Then� when we read the next input line� we would
overwrite the current string as well� Instead we need to copy the new line string into the current
longest string� The standard library provides a function for this operation�

STRING strcpy�STRING dest� STRING source
�

which copies a string pointed to by source into a location pointed to by dest� The function
returns the destination pointer� dest� This is the equivalent of an assignment operation for data
type� STRING�

The prototypes for these and other standard library string functions are in a header 	le�
string�h� We can now write the program implementing our algorithm as shown in Figure �����
Notice� we initialize the current longest string by using strcpy�
 to copy an empty string into
longest� It is also possible to initialize it as follows�

�longest � ��
��

or�

longest�
� � ��
��

Use of strcpy�
 makes it clear that an empty string is copied into longest� It has the �avor of
assigning a string constant to another string� the same way longest is updated to the new string�
s� within the loop body� Thus� we are sticking with our concept of an abstract data type by only
using the de	ned functions to perform operations on data of the type� STRING� A sample session
is shown below�

���Longest Line���

Type text lines� empty line to quit

hello

good morning

Longest line is�

good morning

Remember that assignments cannot be used to store strings into arrays� When a string is to
be stored into a speci	ed character array� use strcpy�
 to copy one string to another� do NOT

use an assignment operator�

��� CHAPTER ��� STRING PROCESSING

�� File� long�c

This program reads lines of text and saves the longest line�

��

�include �stdio�h�

�include �string�h�

�define SIZE 	

�define DEBUG

main�

� char s�SIZE�� longest�SIZE��

printf�����Longest Line����n�n�
�

strcpy�longest� ��
� �� length of empty string is zero ��

printf��Type text lines� empty line to quit�n�
�

while ��gets�s

if �strlen�s
 � strlen�longest

strcpy�longest� s
�

printf��Longest line is� �n�
�

puts�longest
�

�

Figure ����� Program to 	nd the longest string

����� LIBRARY STRING FUNCTIONS ���

Implementing strcpy�

The standard library provides the function srtcpy�
 for us to use� however� it is instructive to
look at how such a function can be written� Let us write our version of strcpy�
 to copy string�
t� into string� s�

�� File� str�c ��

�� Function copies t into s ��

�include �strtype�h�

STRING our�strcpy�STRING s� STRING t

�

while ��t �� ��
�
 �

�s � �t�

s���

t���

�

�s � ��
��

return s�

�

The arguments passed to formal parameters� s and t� are of type STRING� i�e� character
pointers� The loop is executed as long as �t is not NULL� In each iteration� a character is copied
into �the string pointed to by� s from �the string pointed to by� t by the assignment of �t to �s�
The pointers s and t are then incremented so they point to the next character positions in the
two arrays� If t does not point to a NULL� the loop repeats and copies the next character� etc� If t
points to a NULL� the loop terminates� After the loop terminates� a terminating NULL is appended
to s� The function returns the pointer� s�

Notice� there is a problem with this implementation� The function returns the value of s�
however� this is no longer a pointer to the destination string � s has been incremented as the
string was copied and now points to the end of the destination string� We leave the repair of this
function as an exercise �see Problem ����

Several alternate versions of our strcpy�
 can be written as follows �Note� these versions
return void rather than a STRING��

�� File� str�c � continued ��

void our�strcpy��STRING s� STRING t

�

while ���s � �t
 �� ��
�
 �

s���

t���

�

�

In the above� the while condition uses the assignment expression whose value is the character
assigned to check against NULL� If the value is NULL� the loop is terminated� however� the assignment
places the terminating NULL character before the loop is terminated� Here is another variation�

��� CHAPTER ��� STRING PROCESSING

�� File� str�c � continued ��

void our�strcpy��STRING s� STRING t

�

while ��s � �t
 �

s���

t���

�

�

In the while loop� when the assigned character is �n��� the value of the expression is zero� and
therefore false� Otherwise� the character assigned is not NULL� and the value of the expression is
true� The loop terminates correctly when it should� It is also possible to include increments in
the while expression�

while ��s�� � �t��

�

Here� �t is assigned to �s� and then s and t are incremented� The next version uses array indexing�
otherwise� it is identical to the last version�

�� File� str�c � continued ��

void our�strcpy��STRING s� STRING t

� int i�

i �
�

while �s�i� � t�i�
 �

i���

�

�

Memory Allocation for Strings

When a function is used to put values into an array� it is important that memory for the array be
allocated by the calling function� Consider the following possible error�

�� COMMON BUG ��

char �s� �� should be� char s�SIZE�� ��

strcpy�s� �Hello� good morning to all�
�

The pointer variable� s� can store only a pointer value� no memory is allocated for a string of
characters� Nor is the pointer variable s initialized� The function� strcpy�
� assumes that s

points to memory where a string can be stored� No such memory has been allocated� nor does s
point to any valid location � the program will crash�

A second type of error can occur if the calling function does not allocate memory for a string�
but instead depends on the called function to do so� Let us consider an example in which a string
copy function allocates memory for the copied string and returns a pointer to it� and see where
the error leads us� Here is the function�

����� LIBRARY STRING FUNCTIONS ���

�� File� allocerr�c ��

�include �stdio�h�

�include �strtype�h�

�� COMMON ERROR ��

STRING scopy�STRING t

� char s�	

��

int i �
�

while �s�i� � t�i�

i���

return s�

�

The function copies a string into an �automatic� array variable de	ned in the function� and returns
a pointer to the array� When the function returns to the calling function� the memory for the
array� s� is freed automatically� The value of s is returned� but s now points to garbage� Of
course� the compiler does not �ag an error� since the value of s can be legitimately returned� The
fact that it now points to garbage is a program logic error�

Let us see what happens when we use this function in a program� We declare a STRING
variable� p� which is assigned the value of the pointer returned by the above function� scopy�
�

�� File� allocerr�c � continued ��

�� PROGRAM BUG ��

main�

� STRING p� scopy�STRING t
�

p � scopy��hello�
�

puts�p
�

�

The function� scopy�
� returns a pointer to an array which has already been freed for other
uses� The now freed memory� previously holding the array� must be assumed to have garbage
value� The pointer to this garbage is assigned to p� The function� puts�
� assumes p is a valid
string and will print whatever garbage p points to� not the original meaningful string� Without
a clear understanding� the above type of error is hard to pinpoint� The freed memory holding
the array may or may not be immediately used for other purposes� thus� sometimes� puts�
 in
the above example may print a �partly� meaningful string� At other times� it will print out all
garbage�

The only solution is to declare all the needed arrays in the calling function� main�
 and pass
them as arguments to called functions� The called functions can then put strings in these arrays
and the calling function� main�
� can later use these strings without any problem� The correct
structure is as follows�

���

void scopy �STRING s� STRING t
�

��� CHAPTER ��� STRING PROCESSING

main�

� char s�SIZE�� t�SIZE��

scopy�s� t
�

���

�

Using String Functions with Substrings

The function� strcpy�
� is given two character pointers� one to the destination array and one
to the source string� These pointers may point to any character position within an array which
corresponds to a substring beginning at that position� continuing to the next NULL in the array�
We can call our string functions with arguments that are substrings of other strings� For example�
we can copy a substring of t into any location in s�

�� File� partstr�c

Program shows overwriting part of a string with part of another�

��

�include �stdio�h�

�include �string�h�

�define SIZE 	

main�

� char s�SIZE�� t�SIZE��

printf�����Partial Strings����n�
�

strcpy�s� �This can be trouble�
�

strcpy�t� �Insert string�
�

printf��Old s� �
� puts�s
�

printf��Old t� �
� puts�t
�

strcpy�s � �� t � �
�

printf��New s� �
� puts�s
�

�

Sample Session�

���Partial Strings���

Old s� This can be trouble

Old t� Insert string

New s� Thit string

The program copies a substring starting at t � � into a location pointed to by s � �� String copy
terminates with a NULL� any remaining characters in string s after the 	rst NULL are not part of
the string�

We can even use strcpy�
 to copy part of a string to a di�erent location in the string itself� As
always� we must be sure that we are dealing with NULL terminated strings and must also take care

����� LIBRARY STRING FUNCTIONS ���

that the copy process does not overwrite useful data� For example� here is a loop that eliminates
leading white space from a string� s�

strcpy�s� � Aloha�
�

while �isspace��s

strcpy�s� s � 	
�

The function� isspace�
� is a library routine that returns True if the argument is a white space�
�We have indicated white space explicitly by a ��� The loop is executed as long as �s� the 	rst
character of s� is a space� In the loop� the string starting at s � 	 is copied into s� character by
character� Each time the loop is executed� one leading white space is removed from s� Here are
the successive strings starting with the original �again we use white space indicator ���

����Aloha

���Aloha

��Aloha

�Aloha

Aloha

When a string is copied into itself by strcpy�
� as long as destination index is less than the
source index� we overwrite only the desired characters� If the destination index is greater than the
source index� destination characters will be overwritten� For example�

strcpy�s� �abcdef�
�

strcpy�s�	� s
�

The second strcpy�
 copies s�
�� i�e� �a� into s�	�� then copies s�	� into s���� then copies
s��� into s���� etc� All elements of s are overwritten with �a�� even the NULL� resulting in a
non
valid string � a logic error�

Next� let us consider moving the NULL position� Since the 	rst NULL terminates a string� we
can move the NULL to squeeze out unneeded trailing characters� Here is a loop that eliminates
trailing white space�

while �isspace�s�strlen�s
 � 	�

s�strlen�s
 � 	� � NULL�

Starting with the original� successive strings are shown below with an explicit terminating NULL

�again� we use a � as a white space indicator��

Aloha�����

Aloha����

Aloha���

Aloha��

Aloha�

��� CHAPTER ��� STRING PROCESSING

������ String Operations� strcmp�� and strcat��

In the last section we saw how a string can be copied and how to determine the length of a string�
Two other common operations on strings are to compare them and to join strings� i�e� concatenate
them�

Our next task is to read lines of text� until a blank line is entered� and examine each line to
see if it is the same as a �control string�� If a line equals the control string� the line is ignored�
otherwise� it is appended to a bu�er� When a blank line is encountered in the input� the bu�er is
printed� The control string is assumed to be entered as the 	rst line� Here is the task�

JOIN� Read a 	rst line as the control string� Read other lines until a blank line is entered�
either adding each line to a bu�er or discarding it� A line is discarded if it equals the control
string� When a line is added to the bu�er� separate it from the previous text by a space� Print
the bu�er at the end of input�

The algorithm will require several functions� one to compare strings� another to append �i�e�
concatenate� one string to another� Here is the algorithm�

initialize the buffer to an empty string

read the first line into the control string

while not a blank line� read a line

if the new line is not equal to the control line

then if the buffer is not empty� append a space to the buffer

append the new line to the buffer

print the buffer

The two new string operations we will need are provided by the standard library� We will use
them to implement our algorithm� The 	rst function compares two strings�

int strcmp�STRING s	� STRING s�
�

The function� strcmp�
� compares the strings� s	 and s�� and returns an integer indicating the
result of the comparison� If the two strings are equal� it returns a zero value� If the two strings are
not equal� the function returns the di�erence between the 	rst two unequal characters in the two
strings� The returned value will be positive if s	 is lexicographically greater than s�� and negative
if s	 is less than s�� Thus� the strcmp�
 function is the equivalent of a relational operator for
strings�

The second function we need is to join two strings� Again� the standard library provides a
function�

STRING strcat�STRING s	� STRING s�
�

which concatenates �i�e� joins� the two strings� s	 and s�� and stores the result in s	� It
returns s	� i�e� the pointer to the combined string� This is the equivalent of the addition operator
for strings� The prototypes for these and other standard library string functions are in a header
	le� string�h�

We can now use these functions to implement our program as shown in Figure ����� We 	rst

����� LIBRARY STRING FUNCTIONS ���

�� File� text�c

Program reads strings until a blank line is entered� The first string

read is used as a control� If the other strings are not equal to the

control string� they are concatenated to the buffer but separated by a

space� It prints out the buffer at the end� A debug statement prints the

accumulated string at each step and its length�

��

�include �stdio�h�

�include �string�h�

�define SIZE 	

�define DEBUG

main�

� char s�SIZE�� control�SIZE�� text�SIZE��

printf�����Build Text� Exclude Control String����n�n�
�

printf��Type control string� �
�

gets�control
�

strcpy�text� ��
� �� length of empty string is zero ��

printf��Type text lines� RETURN to quit�n�
�

while ��gets�s

 �

if �strcmp�s� control
 ��

 �

if �strlen�text

strcat�text� � �
�

strcat�text� s
�

�

�ifdef DEBUG

printf��debug�length of buffer is �d� �s�n��

strlen�text
� text
�

�endif

�

printf��Final buffer is� �
�

puts�text
�

�

Figure ����� Code using strcmp�
 and strcat�

��� CHAPTER ��� STRING PROCESSING

read a string into the variable� control� and initialize the bu�er� text� to an empty string� The
while loop then reads strings until a blank line is entered� Since the expression gets�s
 reads a
line of text and returns the destination pointer� s� �gets�s
 is the 	rst character of the string
read into s� The expression is True if any non
empty string is entered� It is False when the 	rst
character of s is a NULL which occurs when an empty line �just a RETURN� is entered�

For each string read into s� we compare it with control� If they are not equal� we concatenate
text and s� A space is concatenated to text if it is not empty� so that the concatenated strings
are separated by a space� We have included a debug statement to print the accumulated bu�er
and its length� When the input terminates� the accumulated string� text� is printed� Here is a
sample session�

���Build Text� Exclude Control String���

Type control string� Hello

Type text lines� RETURN to quit

Hello

debug�length of buffer is
�

earth

debug�length of buffer is �� earth

calling

debug�length of buffer is 	�� earth calling

moonbase�

debug�length of buffer is ��� earth calling moonbase�

hello

debug�length of buffer is ��� earth calling moonbase� hello

Final buffer is� earth calling moonbase� hello

Observe that string comparisons are case distinct� e�g� hello is not the same as Hello� so the
	rst Hello in the input is discarded� while the second� hello� is not�

The function� strcmp�
� can be used when we wish to search for a particular string or when
we wish to order strings in lexicographic or dictionary order� Unfortunately� upper case and lower
case values of a letter are not equal as shown above� therefore� we must change all strings to the
same case �e�g� by using tolower�
� for a case independent comparison�

To understand how these library functions work� let us write our own versions of functions
strcmp�
 and strcat�
� beginning with our strcmp�
� First� let us look in a little more detail
of �what� strcmp�
 does� Given two strings� the comparison proceeds character by character
until two unequal characters are encountered� or both the strings are exhausted� When two
unequal characters are encountered� their di�erence is returned� If no unequal characters have
been encountered when both strings have reached NULL� the two strings are identical� and zero is
returned� Here are some examples of results using strcmp�string	� string�
�

����� LIBRARY STRING FUNCTIONS ���

�� File� str�c � continued

Compares strings s and t� returns difference of first

unequal characters or returns zero�

��

int our�strcmp�STRING s� STRING t

�

while � �s
 � �� terminate when s is exhausted ��

if ��s �� �t
 �� if unequal� break loop ��

break�

s��� �� traverse the two strings ��

t���

�

return �s � �t� �� return the difference of characters ��

�

Figure ����� Code for our strcmp

string� string� returned value comment

hawaii hawaiian �
 �a� negative
hilo hawaii �i�
 �a� positive

hawaii hawaii � zero
hawhaw hawaii �h�
 �a� positive
Hawaii hawaii �H�
 �h� negative
haw��� hawaii ���
 �a� negative

We can model our algorithm on this behavior of strcmp�
� We traverse both strings until
we arrive at a terminating NULL in either one� During traversal� we examine the corresponding
characters in the strings to see if they are unequal� If so� we terminate the traversal loop� Other

wise� we continue the process� When the loop is terminated� we return the di�erence between the
characters where we left o� in the two strings�

Figure ���� shows the code implementing this algorithm� The while loop traverses strings s and
t terminating when s points to a NULL character� Within the loop� the corresponding characters
of the two strings are compared� If unequal characters are encountered� the loop is terminated�
and the di�erence between the characters is returned� If the loop terminates because �s is zero�
then no unequal characters have been encountered so far� but the string t may or may not be
exhausted� In either case� �s � �t� i�e
 � �t is returned� In particular� if t points to NULL �the
string t is also exhausted�� then the two strings are equal and zero is returned� Otherwise� the
di�erence between the 	rst unequal characters is returned� Note� we do not need to test for the
end of the string t in the while condition� If t terminates before s� then the NULL at the end of
string t will not compare equal to �s� and the loop will terminate anyway�

��� CHAPTER ��� STRING PROCESSING

�� File� str�c � continued

Concatenates s and t by appending t to s� Returns

pointer to s� s must point to a large enough array to accommodate the

concatenated string�

��

STRING our�strcat�STRING s� STRING t

� STRING p�

p � s� �� save pointer s ��

while ��s
 �� increment s until it points to NULL ��

s���

strcpy�s� t
� �� copy t into s ��

return p� �� return saved pointer ��

�

Figure ����� Code for our strcat�

To write our strcat�
� we must append the second string to the end of the 	rst string� so we
must traverse the 	rst string until we 	nd the NULL� We can then copy the second string at this
point in the 	rst using strcpy�
� The function returns the pointer to the destination string� i�e�
the beginning of the 	rst string� Since the function must return a pointer to the original string� s�
we save the original pointer in a variable� p� We then increment s until it points to the terminating
NULL� We then copy t into s starting at the NULL character position using strcpy�
� and return
the saved pointer� p� This function performs the same task as does strcat�
�

������ String Conversion Functions

Besides the functions for manipulating strings discussed in the previous sections �and others not
discussed� but presented in Appendix C�� the standard library provides several functions for con

verting the character �ascii� information in a string to other data types such as integers or �oats�

We will illustrate the use of one such function� atoi�
� by modifying our function getint�

that we wrote in Chapter �� Recall� this function reads the next valid integer from the standard
input character by character� skipping over any leading white space� converts the character se

quence to an integer representation� and returns the integer value� The prototype for this function
is�

int getint�void
�

In our previous version of this function� we made it robust enough to detect when EOF or invalid
�non
digit� characters are present in the input� Here we will extend the utility of getint�
 to read
the next white space delimited item in the input� and convert it to integer form� this time allowing
a leading � or � sign� and give the user the opportunity to re
enter data for illegal character errors�

����� LIBRARY STRING FUNCTIONS ���

GETINT� Write a program that reads only a valid integer� If there is an error in entering an
integer� it detects the error and allows the user to re
enter the data�

The program driver is quite simple� it calls the function getint�
 that returns a valid integer
read from the standard input� The driver then prints the integer returned by the function� Here
is the algorithm for getint���

initialize valid to False

while not a valid string

read a string s

set valid to True if s represents a valid integer

if valid

return an integer represented by the string s

else

print an error message

The function reads in the input as a string� and checks if it is a valid digit string for an integer�
To check if a string s is a valid integer string� we examine whether it consists of only digits with�
perhaps� a leading unary sign �� or ��� The following algorithm sets valid to True if s represents
a valid integer�

if �s is ��� or ���

valid � digitstr�s � 	
�

else

valid � digitstr�s
�

If the 	rst character of s is a unary sign� check the rest of the string �starting as s � 	� for all
digits� otherwise check the entire string s for all digits�

If s is a valid digit string� the function returns an equivalent integer using the standard library
function� atoi�
� The call atoi�s
 returns the integer represented by the string s� The function
atoi�� has the prototype �included in stdlib�h��

int atoi�STRING s
�

If s is not a valid string� the user is prompted to type the input again�
To check if all characters in a string are digits� getint�
 uses the function digitstr�
� The

algorithm modules are combined and implemented in a program shown in Figure �����
The driver gets an integer and prints it� The function getint�
 reads the next white space

delimited string in the input using scanf�
� If the 	rst character is a unary operator� we check
for digits string starting at the pointer s � 	� otherwise� we check starting at the pointer s� The
�ag� valid� stores the value returned by digitstr�
� If valid is True� we use atoi�
 to return
the integer represented by s� otherwise� we print a message prompting the user to re
enter the
integer� �ush any remaining characters on the input line� and read the new input� The �ag valid

is initialized to False� and the loop continues as long as valid remains False� i�e� as long as a valid
integer is not entered�

The function digitstr�
 traverses the string until a NULL appears� If a non
digit is encountered
anytime during traversal� it returns False� otherwise� at the end of traversal� it returns True� It
uses the library function� isdigit�
 to check if a character is a digit�

A sample session is shown below�

��� CHAPTER ��� STRING PROCESSING

�� File� intchk�c

This program reads and prints an integer� It detects errors in

input and asks the user to retype�

��

�include �stdio�h�

�include �tfdef�h� �� defines TRUE� FALSE ��

�include �stdlib�h� �� prototype for atoi�
 ��

�include �ctype�h�

�define SIZE 	

main�

� int n�

printf�����Valid Integer Input����n�n�
�

printf��Type an integer� �
�

n � getint�
�

printf��Integer is �d�n�� n
�

�

�� Function gets a valid integer� ��

int getint�void

� char s�SIZE��

int valid � FALSE� �� flag for valid string ��

while��valid
 �

scanf���s��s
� �� read a string delim by ws ��

if ��s �� ��� �s �� ���
 �� if first char is � or �� ��

valid � digitstr�s � 	
� �� check rest of string� ��

else �� otherwise� ��

valid � digitstr�s
� �� check the entire string ��

if �valid
 �� if a valid string ��

return�atoi�s

� �� return its equivalent integer ��

�� otherwise� ��

printf�����Error in input�n�
��� print an error mesg ��

printf��Re�enter your integer� �
�

while�getchar�
 �� ��n�
� �� flush remainder of input ��

�

�

�� File� str�c � continued ��

�� Checks if a string t is all digits ��

int digitstr�STRING t

�

while ��t

if ��isdigit��t

 �� if any character in t is ��

return FALSE� �� NOT a digit� return FALSE ��

else t��� �� else point to next char� ��

return TRUE� �� if all chars are digits� return TRUE ��

�

Figure ����� Code for getint�

����� LIBRARY STRING FUNCTIONS ���

���Valid Integer Input���

Type an integer� ��	e

���Error in input

Re�enter your integer�
��	

���Error in input

Re�enter your integer� ����	

���Error in input

Re�enter your integer� ���	

Integer is �	��

������ File I�O with Strings

Earlier in this chapter� we described library functions to do string I�O with the standard input
and output� The library also provides functions to do I�O with 	les� Here we will illustrate the
use of these functions with our next task� to search for the presence of a string in the lines of a
text 	le�

GETLNS� Search for a control string in the lines of a 	le� Each line that contains the control
string is to be written to an output 	le and to the standard output�

The algorithm is written easily if we write a function� srchstr�
� that searches for the presence
of one string in another� Here is the algorithm�

get the control string control

open files

while not EOF� read a line s from the input file

if srchstr�s� control
 is True

then write the line to output file and stdout

We could use character I�O to read from an input 	le� but it is easier to use library string I�O
functions� fgets�
 and fputs�
�

int fgets�STRING s� int n� FILE �fp
�

int fputs�STRING s� FILE �fp
�

These functions are similar to gets�
 and puts�
 with minor di�erences� The function
fgets�
 reads a string from a stream� fp� into a bu�er� s� The maximum size� n� of the string
bu�er must be speci	ed to fgets�
 and must allow for a terminating NULL character� The function
reads a string until a newline character is encountered or the speci	ed maximum size of bu�er
is reached� It adds the terminating NULL� but it does NOT strip the newline character as does
gets�
� The NULL is added after the nn character and fgets�
 returns the bu�er pointer if
successful� or NULL otherwise�

The function fputs�
 outputs a string to a stream fp� It strips the terminating NULL from
the string� but does NOT add a newline character as does puts�
� The function returns the last
character output if successful� EOF otherwise� The prototypes for these functions are included in
stdio�h�

��� CHAPTER ��� STRING PROCESSING

�� File� srchstr�c

This program searches for a string in an input file� Every line

that contains the string is printed out�

��

�include �stdio�h�

�include �tfdef�h�

�include �strtype�h�

�define SIZE 	

main�

� FILE �input� �output�

char infile�	��� outfile�	���

char s�SIZE�� control�SIZE��

printf�����String Search����n�n�
�

printf��Type a string to be searched for� �
�

gets�control
�

printf��Input file � �
�

gets�infile
�

printf��Output file � �
�

gets�outfile
�

input � fopen�infile� �r�
�

if �input �� NULL
 �

puts����� Can�t open input file ����
�

exit�

�

�

output � fopen�outfile� �w�
�

if �output �� NULL
 �

puts����� Can�t open output file ����
�

exit�

�

�

while �fgets�s� SIZE � 	� input

if �srchstr�s� control

 �

puts�s
�

fputs�s� output
�

�

fclose�input
�

fclose�output
�

�

Figure ����� Driver for Text Searching Program

����� LIBRARY STRING FUNCTIONS ���

�� File� srchstr�c � continued ��

�� Function tests if str is in s ��

int srchstr�STRING s� STRING str

�

while ��s

if �compare�s� str

 �� if str is at the start of s ��

return TRUE� �� return True ��

else s��� �� otherwise� go to the next pos� ��

return FALSE� �� string exhausted� return False ��

�

Figure ����� Code for srchstr�

The program driver for our task is easy to write as shown in Figure ����� The program driver
	rst reads the control string to search for� It then opens the input and output 	les� The while
loop reads lines from the input 	le until end of 	le� Each line read is tested by srchstr�
 for
the presence of the control string� If the control string is present in the line� it is written to both
stdout and the output 	le� We will need TRUE and FALSE de	nitions for srchstr�
� so we have
included the header 	le� tfdef�h�

The function� srchstr�
 traverses the string� s� and tests if the control string is present at
each position in s� If it is present� it returns TRUE� otherwise� it goes to the next position� The
function� srchstr�
� uses a function� compare�
� to see if a string is present at the start of another
string� This is di�erent than strcmp�
 since the string we are searching in may not terminate at
the end of the control string� The code for srchstr�
 is shown in Figure ����� Given a string� s�
and a control string� str� it starts at the 	rst character of s� and calls compare�
 to see if str is
present in s starting at the 	rst character� If it is� it returns TRUE� otherwise� it increments s to
point to the next character� If the string is exhausted� it returns FALSE�

The code for compare�
 is shown in Figure ������ It traverses str and s until str is exhausted�
If it encounters corresponding characters that are not the same in the two strings� it returns FALSE�
When str is exhausted� it returns TRUE� Here is a sample session�

���String Search���

Type a string to be searched for� while

Input file � ucstr�c

Output file � xyz

while �gets�s

 f

The 	le ucstr�c contains only one line with the string while in it� That line is written to the
	le xyz and to stdout�

For this task� we have written our own function to compare str with the 	rst several characters
in string s because we do not expect s to terminate at the end of the control string� str� If n is

��� CHAPTER ��� STRING PROCESSING

�� File� srchstr�c � continued ��

�� Function tests if str is at the start of s ��

compare�STRING s� STRING str

�

while ��str

if ��str�� �� �s��

return FALSE�

return TRUE�

�

Figure ������ Code for compare�

the length of str� then we require a comparison of the 	rst n characters in the two strings� There
is a standard library function� strncmp�
� which does just that�

int strncmp�STRING s� STRING t� unsigned n
�

It compares the 	rst n characters of s and t� and returns the di�erence of the 	rst unequal
characters� or it returns zero if they are all equal� just like strcmp�
� So� instead of compare�s�
str
� we could have used�

strncmp�s� str� strlen�str

A similar library function� strncpy�
� is also available�

STRING strncpy�STRING s� STRING t� unsigned n
�

which copies n characters from the source string� t� into the destination string� s� without adding
a terminating NULL� It returns s�

We close this section by emphasizing the di�erence between gets�s
 and fgets�s� n� fp
�
Let us assume an input string �Hawaiinn� is in the standard input� and that the string s is large
enough to accommodate the example string with n selected appropriately� The string� s is shown
below after the use of each function�

gets�s
� Hawaii�
 �� newline stripped� NULL appended ��

fgets�s� n� stdin
� Hawaii�n�
 �� newline present� NULL appended ��

Similarly� the output of the functions puts�s
 and fputs�s� fp
 is shown below�

puts�s
� Hawaii�n �� NULL stripped� newline appended ��

fputs�s� stdout
� Hawaii�n �� NULL stripped ��

���	� MORE EXAMPLE PROGRAMS ���

���� More Example Programs

In the previous section we have discussed some of the string utility functions provided by the C
standard library and illustrated their use with examples� Additional string functions can be found
in Appendix C� We close this chapter with a few additional example programs making use of
these string processing functions�

������ Palindromes

Our next task is�
PALI� Read strings and check if each is a palindrome�
A palindrome is a string that reads the same forwards and backwards� for example�

able was i ere i saw elba

The algorithm is simple� compare the reverse of the string with the original string� If they are the
same� the string is a palindrome�

while not EOF� read a string s

copy reverse of s into t

if s and t are equal�

s is a palindrome

else

s is not a palindrome

The driver follows the algorithm closely� as seen in Figure ������ We will use a function�
revcpy�
� to copy the reverse of the string�

We must write the function revcpy�
 to copy one string into another in reverse order� To see
how the algorithm for this function should proceed� we will work with the indices in the source
and destination strings as shown below�

src� hellon�
sind� ���

dest� ollehn�
dind� ���

The string� src� is shown with the terminating NULL and the source index� sind� must start at
the last character of src and decrease as each character is copied� In the destination string� dest�
the index� dind� must start at � and increase as each character is copied� When the source index
becomes negative� all characters have been copied in reverse order from the source� After all the
characters are copied� a terminating NULL must be added to the destination string� Here is the
algorithm�

initialize sind to the last index of src and dind to

while sind is ��

copy from src to dest

increment dind and decrement sind

add a NULL to dest

��� CHAPTER ��� STRING PROCESSING

�� File� pali�c

Program reads a string and tests whether it is a palindrome�

It repeats the process until EOF�

��

�include �stdio�h�

�include �string�h�

�include �strtype�h�

�define SIZE 	

main�

� char s�SIZE�� t�SIZE��

printf�����Palindrome Test����n�n�
�

printf��Type strings� EOF to quit�n�
�

while �gets�s

 �

revcpy�t� s
� �� copy reverse of s into t ��

if �strcmp�s� t
 ��

printf���s� a palindrome�n�� s
�

else

printf���s� not a palindrome�n�� s
�

�

�

Figure ������ Driver for Palindrome

���	� MORE EXAMPLE PROGRAMS ���

�� File� pali�c � continued

Function copies string src in reverse order into string dest�

��

void revcpy�STRING dest� STRING src

� int sind� dind �
� �� dest index is
 ��

sind � strlen�src
 � 	� �� source index at last character ��

while �sind ��

 �� loop while source index is non�neg� ��

dest�dind��� � src�sind���� �� copy character� and update ��

dest�dind� � NULL� �� append a NULL ��

�

Figure ������ Code for revcpy�

The function is shown in Figure ������
Here is a sample session�

���Palindrome Test���

Type strings� EOF to quit

this is it

this is it� not a palindrome

able was i ere i saw elba

able was i ere i saw elba� a palindrome

�D

Our function� revcpy�
� will work 	ne as long as the source and destination strings are di�erent
strings� We could write a function to reverse a string in place� We can follow the same procedure of
copying from the source index to the destination index� however� since the source and destination
strings are the same string� characters at source index as well as at destination index must be
swapped rather than simply assigned� Otherwise� copying a character from the source index to
the destination index will overwrite a character�

s� hellon�
sind� ���

dind� ���

new s� ollehn�

Furthermore� the characters need only be swapped as long as source index is greater than desti

nation index� When the source index is less than the destination index� all characters have been
swapped� If the two indices are equal� the corresponding characters are the same and need no
swapping� Finally� a terminating NULL need not be added since it is already present in the correct
position� Figure ����� shows the code for the function revself�
�

��� CHAPTER ��� STRING PROCESSING

�� File� str�c � continued

Function reverses string s in place�

��

void revself�STRING s

� int c� sind� dind �
� �� c used as temp� storage during a swap ��

�� dest index at
 ��

sind � strlen�s
 � 	� �� src index at last char� ��

while �dind � sind
 � �� loop while chars need swapping ��

c � s�dind�� �� swap characters� ��

s�dind��� � s�sind�� �� and update indices ��

s�sind��� � c�

�

�

Figure ������ Code for revself�

������ Words

Our next task is to break up a string into words delimited by white space�
WDS� Read strings� break up each string into its constituent words�
The algorithm starts by skipping over leading white space� If the string is not exhausted� a

word starts at that position and continues until the next white space� Here is the algorithm�

while not EOF� read a string s

initialize string index to

while not NULL

skip over leading white space

initialize word index to

copy the next word into wd

terminate word with a NULL

print the word

In our algorithm� a word is any sequence of characters delimited by white space� Figure �����
shows the program� It reads lines until EOF scanning each line until a NULL is reached� Each scan
	rst skips over white space� then copies a word into a string� wd� while characters are non
white
space and non
NULL� A terminating NULL is added to the word and it is printed� Here is sample
session�

���Words in Strings���

���	� MORE EXAMPLE PROGRAMS ���

�� File� strwds�c

This program reads strings until EOF� For each string read� it copies each

of the words into another string and prints it�

��

�include �stdio�h�

�include �string�h�

�include �ctype�h�

�define SIZE !

�define WDSIZE �

main�

� char s�SIZE�� wd�WDSIZE��

int i� j�

printf�����Words in Strings����n�n�
�

printf��Type strings� EOF to quit�n�
�

while �gets�s

 � �� read lines until EOF ��

i �
�

while �s�i�
 � �� repeat while s�i� is not NULL ��

while �isspace�s�i�

 �� skip leading white space ��

i���

j �
� �� initialize for a new word ��

while �s�i� "" �isspace�s�i�

 �� while non�NULL AND non�white ��

wd�j��� � s�i���� �� copy word ��

wd�j� � NULL� �� terminate string ��

puts�wd
� �� print word ��

�

�

�

Figure ������ Code for separating words from a string

��� CHAPTER ��� STRING PROCESSING

Type strings� EOF to quit

This is a test

This

is

a

test

�D

������ Substrings

In string manipulations� it is frequently necessary to 	nd a substring of a string� A substring is
a string that is part of another string� It can be parameterized by specifying where the substring
starts and how long it is� Our next task is to write a program that 	nds a substring of a string at
a given position and of a speci	ed size�

SUBSTR� Read substring parameters� For each line of input� 	nd the appropriate substring�
For example� consider the string�

Source string� This is a test stringn�

�The terminating NULL is shown explicitly�� A substring of this string starting at index position �
and containing � characters is�

Destination string� is isn�

We will write a function to extract such a substring� The function must be passed several argu

ments� the source string �pointer�� a destination string where the speci	ed substring is to be copied
�pointer�� the starting position of the substring in the source string �integer�� and the number of
characters for the substring �integer��

It may or may not be possible for the function to extract the string� For example� if the
starting position is outside the string� no substring can be extracted� We will assume that the
function returns the destination string �pointer� if successful in extracting a string� otherwise� it
returns a NULL pointer to indicate failure� We will also assume that the function will extract as
many characters as possible upto the speci	ed number� The function prototype should be�

STRING substr�STRING src� STRING dest� int startpos� int nchrs
�

The parameter� src� points to the source string� and dest points to an array where the
substring of src is to be copied� The next two arguments provide the starting position and the
number of characters� The calling function must allocate memory for the destination string� The
starting position� startpos is an index into the array � it must be � or greater� The parameter�
nchrs is the maximum number of characters to copy into the substring�

Since the program depends primarily on substr�
� let us 	rst develop an algorithm for it�
The function must start copying characters from the starting position startpos� If we use an array
index� src�startpos� accesses the character at the start position if startpos is in the source
string� If startpos is not in the source string� we will return a NULL to indicate failure to extract
a substring�

Next� we must copy up to a maximum of nchrs characters into dest� When the source string
is exhausted or nchrs characters are copied� we stop the copy process and append a NULL to the

����� COMMON ERRORS ���

substring� If even one character is copied into the substring� we will return the destination pointer�
Here is the algorithm�

if startpos �� strlen�src

return NULL

j �
�

while j is less than nchrs and src is not exhausted

copy a character� dest�j� � src�startpos � j�

increment j

terminate dest with NULL

return dest

The program driver reads the start position and the number of characters� It then reads strings
until end of 	le and 	nds the substring for each string if possible� The code for the driver and
substr�
 is shown in Figure ������ The program prints the substring if it can be extracted�
otherwise� it prints a message� Here is a sample session�

���Substring Extraction���

Type start position and number of characters� � �

Type text lines� EOF to quit

this is a test string

is is

hello

llo

well

ll

he

Substring cannot be extracted

then

en

�D

���� Common Errors

�� Failure to include library header 	les� e�g� string�h� Prototypes for library string routines
are not included resulting in default assumptions and consequent problems�

�� We have already discussed common string related errors in Chapter � and in this chapter�
Always allocate space for an array where a string is to be stored� Once space is allocated
for a string� pointer variables can be used to access strings�

�� Array names must not be used as Lvalues�

��� CHAPTER ��� STRING PROCESSING

�� File� substr�c

Program extracts a substring and prints it�

��

�include �stdio�h�

�include �strtype�h�

�define SIZE !

STRING substr�char src��� char dest��� int startpos� int nchrs
�

main�

� char s�SIZE�� sub�SIZE��

int start� n�

printf�����Substring Extraction����n�n�
�

printf��Type start position and number of characters� �
�

scanf���d �d��c�� "start� "n
� �� suppresses newline ��

printf��Type text lines� EOF to quit�n�
�

while �gets�s

 �

if �substr�s� sub� start� n

 �� if substring� ��

puts�sub
� �� print it ��

else

printf��Substring cannot be extracted�n�
�

�

�

�� Function copies a substring of src� starting at i and n characters

long� into dest� It returns dest if success� NULL otherwise�

��

STRING substr�STRING src� STRING dest� int startpos� int nchrs

� int j�

if �startpos �� strlen�src

return NULL�

for �j �
� j � nchrs "" src�startpos � j�� j��
 �

dest�j� � src�startpos � j��

�

dest�j� � NULL�

return dest�

�

Figure ������ Code for the substring program

����� SUMMARY ���

���� Summary

This chapter has discussed a very common data type in C programs� the string� We have brie�y
introduced the concept of an abstract data type as consisting of a data declaration and a set of
operations on data items of that type� We have de	ned a user de	ned type� STRING� for string
data and used it throughout the chapter� �While our string data type does not completely satisfy
the de	nition of an abstract data type� the basic concept is seen��

Many common operations on string data are provided through the standard library� We have
described a few of these� in particular functions for I�O� gets�
 and puts�
� and 	le I�O� fgets�

and fputs�
 whose prototypes are de	ned in stdio�h� In addition the functions for string ma

nipulation� strlen�
 and strcpy�
 as well as string operation� strcmp�
 and strcat�
� have
been described� Other functions described include atoi�
� strncmp�
� and strncpy�
�

Throughout the chapter we have shown numerous examples of programs for string processing�

��� CHAPTER ��� STRING PROCESSING

���� Exercises

�� If the characters in an array� s are� stringn� of charactersn�

What does each of the following print� Show each character�

printf���s�� s
�

puts�s
�

fputs�s� stdout
�

�� If the input of characters is�

string of characters�n

What does each of the following read� Show each character� including NULL�

scanf���s�� s
�

gets�s
�

fgets�s� sizeof�s
 � 	� stdin
�

�� Assume s is a string array� Under what condition is each of the following True�

s

�s

��s

gets�s

�gets�s

��gets�s

Find and correct any errors in the following and determine the outputs where feasible� The
input is shown when appropriate�

�� main�

� char s�!
�� t�!
��

s � �this is a message��

if �s �� t

printf��Equal�n�
�

else

printf��Not equal�n�
�

puts�s
�

�

���
� EXERCISES ���

�� main�

� char s�!
�� t�!
��

scanf���s�� s
�

printf���s�� s
�

�

Input� This is a message

�� main�

� char �s�

s � �this is a message��

printf���d �s�n�� s� s
�

puts�s
�

�

�� main�

� char �s�

gets�s
�

puts�s
�

�

�� main�

� char s�!
��

while ��s
 �

putchar��s
�

s���

�

�

�� main�

� char �s�

strcpy�s� �hello�
�

puts�s
�

�

��� main�

� char name�!
��

name � get�str�name
�

puts�s
�

�

char �get�str�char �s

��� CHAPTER ��� STRING PROCESSING

�

gets�s
�

return s�

�

��� int cmpstr�char �s� char �t

�

if �s �� t

return TRUE�

else

return FALSE�

�

����� PROBLEMS ���

���� Problems

Write program drivers for each of the following� The driver should read appropriate data until
end of 	le� call the functions described below� and print the results�

�� Write a function that returns the index where a character� c� occurs in a string� s� The
function returns
� if c is not present in s� Use array indexing�

�� Repeat � using pointers�

�� Write a function that returns the index where a character� c� occurs in a string s� the search
for c starting at a speci	ed index� i in s� The function returns
� if c is not present in s

starting at the index� i� Use array indexing�

�� Repeat � using pointers�

�� Write a function� how many�
� that returns the number of times a character� ch� occurs in a
string� s� Use array indexing�

�� Repeat � using pointers�

�� Write a function that substitutes a new character� newc� for the 	rst occurrence of a char

acter� c� in a string� s� Use array indexing�

�� Repeat � using pointers�

�� Write a function that substitutes a new character� newc� for every occurrence of a character�
c� in a string� s� Use array indexing�

��� Repeat � using pointers�

��� Rewrite the function� our strcpy�
 in Section ������ so that it properly returns the pointer
to the destination string�

��� Write a function that takes two strings� s and t� as arguments� Copy string s into t� but
remove all white space and punctuation� Use array indexing�

��� Repeat ��� but use pointers�

��� Write a function that takes a string of characters and removes all white space and punctuation
in that same string� Use array indexing�

��� Repeat �� using pointers�

��� Write a function� xwslead�
� that removes all leading white space from a string� Use array
indexing�

��� Repeat �� using pointers�

��� Write a function� xwstrail�
� that removes all trailing white space from a string� Use array
indexing�

��� CHAPTER ��� STRING PROCESSING

��� Repeat �� using pointers�

��� Write a function� xws�
� that removes all leading and trailing white space from a string� Use
array indexing�

��� Repeat �� using pointers�

��� Write a function� squeeze�
� that removes all white space from a string� Use array indexing�

��� Repeat �� using pointers�

��� Write a function� compare�
� that takes two strings as arguments and compares them for
equality after leading and trailing blanks are removed� If the strings are equal after the
leading and trailing blanks are removed� the function returns True� Otherwise� it returns
False�

��� Write a function� �compstrip��� that takes two strings as arguments and compares stripped
versions of them� A stripped string is one from which all white space and punctuation are
removed� Function returns True if the strings are equal after they are stripped�

��� Write a function� palindrome�
 that checks if a given string is the same forwards and
backwards� Use pointers�

��� Write a function that checks if a string is a palindrome ignoring all white space� Example�

i ia wah hawaii

��� Write a function that takes two string arguments� s and t� Copy s into t in reverse order�
except that a sequence of white space is squeezed to a single space�

��� Write a function that takes a single string argument� and reverses the string itself� except
that white space is squeezed to a single space�

��� Write a function that removes the 	rst word from a string� Write a program that uses the
function to remove a speci	ed number of leading words from a string�

��� Write a function that removes the last word in a string� Write a program that uses the
function to remove a speci	ed number of trailing words from a string�

��� Write a function that takes two strings� s	 and s� as arguments� It returns the index where
s� occurs in s	� or it returns
� if s� is not in s	�

��� Write a function that substitutes a new string� repl str� for the 	rst occurrence of a string�
str in a string� src�

��� Write a function that replaces a new string� repl str� for every occurrence of a string� str�
in src�

��� Write a function that detects the presence of a whole word� wd� in a string� s�

����� PROBLEMS ���

��� Write a function that converts a string into an integer� The conversion is terminated when
a non
digit is encountered�

��� Write a function that converts a string into a �oat� The conversion is terminated when a
character that does not belong in a decimal number is encountered�

��� Write a function that converts an integer to a string�

��� Write a function that converts a �oat to a string�

��� Write a function that converts a string of binary digits to an integer�

��� Write a function that converts an unsigned integer into a string of binary digits�

��� Write a function� nexttok�
� that gets the next token from a string� starting at a speci	ed
array index� called cursor� The function returns the new value of cursor� the token itself�
and the type of the token� Leading white space is skipped� A longest valid token is built as
long as the characters belong to a token type� The token is complete when a character that
does not belong to a token type being built is encountered�

A valid token type is either an identi	er� an integer� a �oat� an invalid� or an EOS� end of
string� An identi	er starts with a letter� and may be followed by letters and�or digits� An
integer starts with a digit� and may be followed by digits� A �oat must start with a digit�
may be followed by digits� may be followed by a decimal point� and may be followed by a
sequence of digits� A character other than white space� letters� and digits is an invalid type
token containing that one character� EOS type of token is returned when the NULL character
is reached�

Write a program that reads in lines of input from a 	le� and use the above function to print
out the tokens in each line until EOF�

��� CHAPTER ��� STRING PROCESSING

Chapter ��

Structures and Unions

So far� we have seen one kind of compound �user de	ned� data type � the array and in Chapters
� and � have seen how we can group information into one common data structure� However� the
use of arrays is limited to cases where all of the information to be grouped together is of the same
type� In this chapter we present the other compound data type provided in C � the structure�
which removes the above limitation� We will discuss structures� pointers to structures� and arrays
of structures� As with our previous data types� we will see how such structures can be declared�
how information in them can be accessed� and how we can pass and return structures in functions�
We will also see how arrays of structures are sorted and searched� We illustrate these points with
several example programs�

Finally� we will introduce unions which are similar to structures� however� the elements in the
union share the same memory cells� In a union� di�erent types of data may be stored in a variable
but at di�erent times�

���� Structures

In C� a structure is a derived data type consisting of a collection of member elements and their
data types� Thus� a variable of a structure type is the name of a group of one or more members

which may or may not be of the same data type� In programming terminology� a structure data
type is referred to as a record data type and the members are called fields� �We will use these
two terms interchangebly��

������ Declaring and Accessing Structure Data

As with any data type� we need to be able to declare variables of that type� In particular for
structures� we must specify the names and types of each of the 	elds of the structure� So� to
declare a structure� we need to describe the number and types of 	elds in the form of a template�
as well as declare variables of that type� We illustrate with an example� a program that maintains
temperatures in both celsius and fahrenheit degrees� A variable� temp� is to be used to maintain
the equivalent temperatures in both celsius and fahrenheit� and thus requires two 	elds� both of
them integers� We will call one 	eld ftemp for fahrenheit temperature and the other ctemp for
celsius� The program� shown in Figure ����� reads a temperature to the ftemp 	eld of the variable�
temp� and uses a function� f to c�
� to convert the temperature from fahrenheit to celsius and
store it in the ctemp 	eld� In looking at this program� we see that the variable temp is declared

���

��� CHAPTER ��� STRUCTURES AND UNIONS

�� File� fctemp�c

Program reads temperature in fahrenheit� converts to celsius� and

maintains the equivalent values in a variable of structure type�

��

�include �stdio�h�

main�

� struct trecd �

float ftemp�

float ctemp�

� temp�

double f�to�c�double f
�

char c�

printf�����Temperatures � Degrees F and C����n�n�
�

printf��Enter temperature in degrees F � �
�

scanf���f��"temp�ftemp
�

temp�ctemp � f�to�c�temp�ftemp
�

printf��Temp in degrees F � ���	f�n�� temp�ftemp
�

printf��Temp in degrees C � ���	f�n�� temp�ctemp
�

�

�� This routine converts degrees F to degrees C ��

double f�to�c�double f

�

return��f � ���

 � ��
 � ��

�

�

Figure ����� Code for Simple Structure Program

