11.2. LIBRARY STRING FUNCTIONS 431

/* File: strtype.c
This program illustrates the use of a type definition for strings.
*/
#include <stdio.h>
#include "strtype.h"
#define SIZE 100
void our_strprint (STRING s);
void our_strread(STRING s);

main()

{ char s[SIZE]; /* allocate space for a string */
our_strread(s); /* read a string */
our_strprint(s); /* print a string */

}

/* Function reads a string from standard input.*/
void our_strread(STRING s) /* declare a STRING type */

{
while ((*s = getchar()) '= ’\n’)
s++;
*g = NULL;
t

/* Function writes a string to standard output.*/
void our_strprint (STRING s) /* declare a STRING type */

{
while (*xs) {
printf("/c", *s);
s++;
t
printf("\n");
t

/* File: strtype.h
This file contains the definition of type STRING

typedef char * STRING;

Figure 11.1: Program illustrating the STRING data type

432 CHAPTER 11. STRING PROCESSING

If reading is successful, gets() returns the pointer to the string; otherwise, it returns a NULL
pointer, i.e. a pointer whose value is zero. A returned value of NULL usually implies an end of
file. When gets() reads a string, it reads the input characters until a newline is read, discards the
newline, appends a NULL character to the string, and stores the string where s points. Similarly,
puts () outputs the string, s, after stripping the NULL and appending a newline. It returns the
last character value output if successful; otherwise it returns EOF. Note, the arguments to these
functions and the return value from gets() are character pointers, i.e. equivalent to our STRING
data type, and we can consider them as such. The argument of gets() MUST be a string;
otherwise, the function attempts to store characters wherever the argument points, which can
create a possibly fatal error when the program executes.

We will write and use a function, ucstr (), which converts a string to upper case. The whole
program is simple: it reads a string, converts it to upper case, and prints it; and is shown in
Figure 11.2 In the driver, the loop expression reads a line into s; if successful, the returned value
is a non-zero pointer, s, and the loop is executed. In the loop body, the string, s, is converted
to upper case, and printed. The function, ucstr(), converts a string to upper case by traversing
the string and converting each character to upper case using library routine, toupper(), which
returns the upper case version of its argument if it is a lower case letter; otherwise it returns the
argument unchanged.

Sample Session:

¥*%5tring to Upper Casex

Type strings, EOF to terminate
Hello

HELLO

Pad 19A

PAD 194

good morning

GOOD MORNING

"D

The above program reads lines until end of file. As a slight variation on this task, sometimes
it is desirable to loop until a blank line is entered. Here is a loop that copies lines until a blank
line is entered:

while (*gets(s))
puts(s);

Assuming that a line is read successfully, gets() returns s. The expression, *gets(), is the
same as *s, which is the first character in the string, s. As long as the first character of s has a
non-zero value, the loop continues. When the first character is a NULL, the loop terminates. If a
blank line is entered by typing a RETURN, gets () reads an empty string and the loop terminates.

We can also use gets() in a menu driven program which requires the user to enter either
a single character or a command line. In our previous menu driven programs in Chapter 4, we
saw that reading a single command character required that the keyboard buffer be flushed of the
newline character before reading the next command. If only one character is to be read, or if the
first character of a command line is sufficient to identify a command, then it is simpler to read the

11.2. LIBRARY STRING FUNCTIONS 433

/* FIle: ucstr.c
This program reads strings, converts them to upper case, and
prints them out.

*/

#include <stdio.h>

#include <ctype.h> /* includes toupper() */
#include "strtype.h"

#define SIZE 100

void ucstr(STRING t);

main()

{
char s[SIZE]; /* allocate a string */

printf ("***String to Upper Casex**\n\n");
printf ("Type strings, EOF to terminate\n");

while (gets(s)) {
ucstr(s);
puts(s);

/* Converts t to upper case string */
void ucstr(STRING t)

{
while (*xt) { /* loop until char is null */
*t = toupper(*t); /* convert char *t to upper case */
t++; /* point to next char */
by
by

Figure 11.2: Program to read and print strings using gets() and puts()

434 CHAPTER 11. STRING PROCESSING

entire line using gets (), which strips the newline character from the input line, and then examine
only the first character of the input string. Here is a loop for a menu driven program driver:

printf("H(elp, Q(uit, D(isplay\n");
while (gets(s)) {
switch (toupper(*s)) {

case ’H’: help();
break;

case 'Q’: exit(0);

case ’D’: display();
break;

default: ;

printf ("H(elp, Q(uit, D(isplay\n");

The loop reads an input string, s, and passes the first character of s, *s to toupper() which
converts it to upper case. One of the cases in the switch is selected and an appropriate function
is executed. The loop repeats until gets () returns end of file.

We may now use library functions, gets () and puts (), in place of functions we have previously
written ourselves to read and write strings. Remember, gets() reads an entire line of input text
into a string; replacing the newline with a NULL. Likewise, puts() prints an entire NULL terminated
string; adding a newline at the end.

11.2.2 String Manipulation: strlen() and strepy()

As our next task, let us consider reading lines of text and finding the longest line in the input:

STRSAVE: Read text lines until end of file; save the longest line and print it.

Our approach is similar to the algorithm for finding the largest integer in a list of integers. We
save the current “guess” at the longest line in a string, and, as each new line is read, we compare
the length of the new line with that of the current longest line. If the length of the new line is
greater than that of the current longest, we will save the new line into the longest and proceed.
To begin, we initialize the longest line to an empty string; the shortest of all strings. Here is the
algorithm:

initialize longest to an empty string
while not EOF, read a line
1f length of new line > length of current longest

save new line into longest

print longest

11.2. LIBRARY STRING FUNCTIONS 435

To implement this algorithm, we must consider how we can perform the required operations
on the strings holding the new line and the current longest line. We already know how to read
and write strings; we also need the operations of finding the length of a string and saving a string.
For the former task, the standard library provides a function:

int strlen(STRING s);

which returns the length of a string,s, i.e. the number of characters in s excluding the termi-
nating NULL.

For the second operation, we can consider the implementation of the maximum integer algo-
rithm and how we saved the new maximum value — we used an assignment operator. However,
this will not work for strings. Remember, the string is implemented as a character pointer. If we
simply assigned one string variable to another, we would only be saving the pointer to the first
string, not the string characters themselves. Then, when we read the next input line, we would
overwrite the current string as well. Instead we need to copy the new line string into the current
longest string. The standard library provides a function for this operation:

STRING strcpy(STRING dest, STRING source);

which copies a string pointed to by source into a location pointed to by dest. The function
returns the destination pointer, dest. This is the equivalent of an assignment operation for data
type, STRING.

The prototypes for these and other standard library string functions are in a header file,
string.h. We can now write the program implementing our algorithm as shown in Figure 11.3.
Notice, we initialize the current longest string by using strcpy() to copy an empty string into
longest. It is also possible to initialize it as follows:

*longest = ’\0’;
or
longest[0] = ’\0’;

Use of strcpy() makes it clear that an empty string is copied into longest. It has the flavor of
assigning a string constant to another string, the same way longest is updated to the new string,
s, within the loop body. Thus, we are sticking with our concept of an abstract data type by only
using the defined functions to perform operations on data of the type, STRING. A sample session
is shown below:

x*xLongest Linex

Type text lines, empty line to quit
hello

good morning

Longest line is:
good morning

Remember that assignments cannot be used to store strings into arrays. When a string is to
be stored into a specified character array, use strcpy() to copy one string to another; do NOT
use an assignment operator.

436 CHAPTER 11. STRING PROCESSING

/* File: long.c
This program reads lines of text and saves the longest line.
*/
#include <stdio.h>
#include <string.h>
#define SIZE 100
#define DEBUG

main()
{ char s[SIZE], longest[SIZE];

printf ("**xLongest Linex**\n\n") ;
strcpy(longest, ""); /* length of empty string is zero */
printf ("Type text lines, empty line to quit\n");

while (*gets(s))
if (strlen(s) > strlen(longest))
strcpy(longest, s);
printf("Longest line is: \n");
puts(longest) ;

Figure 11.3: Program to find the longest string

11.2. LIBRARY STRING FUNCTIONS 437

Implementing strcpy ()

The standard library provides the function srtcpy() for us to use; however, it is instructive to
look at how such a function can be written. Let us write our version of strcpy() to copy string,
t, into string, s:

/* File: str.c %/
/* Function copies t into s */

#include "strtype.h"

STRING our_strcpy(STRING s, STRING t)

{
while (¥t !'= ’\0’) {
*g = *t;
s++;
t++;
}
*s = "\0’;
return s;
}

The arguments passed to formal parameters, s and t, are of type STRING, i.e. character
pointers. The loop is executed as long as *t is not NULL. In each iteration, a character is copied
into (the string pointed to by) s from (the string pointed to by) t by the assignment of *t to *xs.
The pointers s and t are then incremented so they point to the next character positions in the
two arrays. If t does not point to a NULL, the loop repeats and copies the next character, etc. If t
points to a NULL, the loop terminates. After the loop terminates, a terminating NULL is appended
to s. The function returns the pointer, s.

Notice, there is a problem with this implementation. The function returns the value of s,
however, this is no longer a pointer to the destination string — s has been incremented as the
string was copied and now points to the end of the destination string. We leave the repair of this
function as an exercise (see Problem 11)

Several alternate versions of our_strcpy() can be written as follows (Note: these versions
return void rather than a STRING):

/* File: str.c - continued */
void our_strcpy2(STRING s, STRING t)

{
while ((*s = *t) '= ’°\0’) {
s++;
t++;
}
}

In the above, the while condition uses the assignment expression whose value is the character
assigned to check against NULL. If the value is NULL, the loop is terminated; however, the assignment
places the terminating NULL character before the loop is terminated. Here is another variation:

438 CHAPTER 11. STRING PROCESSING

/* File: str.c - continued */
void our_strcpy3(STRING s, STRING t)

{
while (*s = *t) {
s++;
t++;
}
}

In the while loop, when the assigned character is "\0’, the value of the expression is zero, and
therefore false. Otherwise, the character assigned is not NULL, and the value of the expression is
true. The loop terminates correctly when it should. It is also possible to include increments in
the while expression:

while (ks++ = *t++)
s
Here, *t is assigned to *s, and then s and t are incremented. The next version uses array indexing;

otherwise, it is identical to the last version:

/* File: str.c - continued */
void our_strcpy4(STRING s, STRING t)

{ int 1i;
i=0;
while (s[i] = t[i]) {
i++;
}
}

Memory Allocation for Strings

When a function is used to put values into an array, it is important that memory for the array be
allocated by the calling function. Consider the following possible error:

/* COMMON BUG */
char *s; /* should be: char s[SIZE]; */

strcpy(s, "Hello, good morning to all");

The pointer variable, s, can store only a pointer value; no memory is allocated for a string of
characters. Nor is the pointer variable s initialized. The function, strcpy(), assumes that s
points to memory where a string can be stored. No such memory has been allocated, nor does s
point to any valid location — the program will crash.

A second type of error can occur if the calling function does not allocate memory for a string,
but instead depends on the called function to do so. Let us consider an example in which a string
copy function allocates memory for the copied string and returns a pointer to it, and see where
the error leads us. Here is the function:

11.2. LIBRARY STRING FUNCTIONS 439

/* File: allocerr.c */
#include <stdio.h>
#include "strtype.h"

/* COMMON ERROR */
STRING scopy(STRING t)
{ char s[100];

int 1 = 0;

while (s[i] = t[i])
i++;

b

return s;

b

The function copies a string into an (automatic) array variable defined in the function, and returns
a pointer to the array. When the function returns to the calling function, the memory for the
array, s, is freed automatically. The value of s is returned, but s now points to garbage. Of
course, the compiler does not flag an error, since the value of s can be legitimately returned. The
fact that it now points to garbage is a program logic error.

Let us see what happens when we use this function in a program. We declare a STRING
variable, p, which is assigned the value of the pointer returned by the above function, scopy ().

/* File: allocerr.c - continued */
/* PROGRAM BUG */

main()

{ STRING p, scopy(STRING t);

p = scopy('hello");
puts(p);
by

The function, scopy(), returns a pointer to an array which has already been freed for other
uses. The now freed memory, previously holding the array, must be assumed to have garbage
value. The pointer to this garbage is assigned to p. The function, puts(), assumes p is a valid
string and will print whatever garbage p points to, not the original meaningful string. Without
a clear understanding, the above type of error is hard to pinpoint. The freed memory holding
the array may or may not be immediately used for other purposes; thus, sometimes, puts() in
the above example may print a (partly) meaningful string. At other times, it will print out all
garbage.

The only solution is to declare all the needed arrays in the calling function, main() and pass
them as arguments to called functions. The called functions can then put strings in these arrays
and the calling function, main(), can later use these strings without any problem. The correct
structure is as follows:

void scopy (STRING s, STRING t);

440 CHAPTER 11. STRING PROCESSING

main()
{ char s[SIZE], t[SIZE];

scopy (s, t);

Using String Functions with Substrings

The function, strcpy(), is given two character pointers, one to the destination array and one
to the source string. These pointers may point to any character position within an array which
corresponds to a substring beginning at that position, continuing to the next NULL in the array.
We can call our string functions with arguments that are substrings of other strings. For example,
we can copy a substring of t into any location in s:

/* File: partstr.c
Program shows overwriting part of a string with part of another.
*/
#include <stdio.h>
#include <string.h>
#define SIZE 100

main()
{ char s[SIZE], t[SIZE];

printf ("***Partial Strings#***\n");
strcpy(s, "This can be trouble");
strcpy(t, "Insert string");

printf("0ld s: "); puts(s);
printf("01ld t: "); puts(t);

strcpy(s + 3, t + 5);
printf("New s: "); puts(s);

b

Sample Session:

¥*%Partial Strings*

0ld s: This can be trouble
0ld t: Insert string

New s: Thit string

The program copies a substring starting at t + 5 into a location pointed to by s + 3. String copy
terminates with a NULL; any remaining characters in string s after the first NULL are not part of
the string.

We can even use strcpy () to copy part of a string to a different location in the string itself. As
always, we must be sure that we are dealing with NULL terminated strings and must also take care

11.2. LIBRARY STRING FUNCTIONS 441

that the copy process does not overwrite useful data. For example, here is a loop that eliminates
leading white space from a string, s:

strepy(s, " Aloha');
while (isspace(*s))
strcpy(s, s + 1);

The function, isspace(), is a library routine that returns True if the argument is a white space.
(We have indicated white space explicitly by a *). The loop is executed as long as *s, the first
character of s, is a space. In the loop, the string starting at s + 1 is copied into s, character by
character. Fach time the loop is executed, one leading white space is removed from s. Here are
the successive strings starting with the original (again we use white space indicator *).

**xkxAloha
**xAloha
**Aloha
*Aloha
Aloha

When a string is copied into itself by strcpy(), as long as destination index is less than the
source index, we overwrite only the desired characters. If the destination index is greater than the
source index, destination characters will be overwritten. For example:

strcpy(s, "abcdef");
strcpy(s+1, s);

The second strcpy() copies s[0], i.e. ’a’ into s[1]; then copies s[1] into s[2]; then copies
s[2] into s[3]; etc. All elements of s are overwritten with ’a’, even the NULL, resulting in a
non-valid string — a logic error.

Next, let us consider moving the NULL position. Since the first NULL terminates a string, we
can move the NULL to squeeze out unneeded trailing characters. Here is a loop that eliminates
trailing white space:

while (isspace(s[strlen(s) - 1]))
s[strlen(s) - 1] = NULL;

Starting with the original, successive strings are shown below with an explicit terminating NULL
(again, we use a * as a white space indicator):

Aloha****\0
Aloha*#**\0
Alohax*x*\0
Alohax*\0
Aloha\0

442 CHAPTER 11. STRING PROCESSING

11.2.3 String Operations: stremp() and streat()

In the last section we saw how a string can be copied and how to determine the length of a string.
Two other common operations on strings are to compare them and to join strings, i.e. concatenate
them.

Our next task is to read lines of text, until a blank line is entered, and examine each line to
see if it is the same as a “control string”. If a line equals the control string, the line is ignored;
otherwise, it is appended to a buffer. When a blank line is encountered in the input, the buffer is
printed. The control string is assumed to be entered as the first line. Here is the task:

JOIN: Read a first line as the control string. Read other lines until a blank line is entered,
either adding each line to a buffer or discarding it. A line is discarded if it equals the control
string. When a line is added to the buffer, separate it from the previous text by a space. Print
the buffer at the end of input.

The algorithm will require several functions: one to compare strings, another to append (i.e.
concatenate) one string to another. Here is the algorithm:

initialize the buffer to an empty string
read the first line into the control string

while not a blank line, read a line
1f the new line is not equal to the control line
then if the buffer is not empty, append a space to the buffer
append the new line to the buffer

print the buffer

The two new string operations we will need are provided by the standard library. We will use
them to implement our algorithm. The first function compares two strings:

int strcmp(STRING s1, STRING s2);

The function, strecmp (), compares the strings, s1 and s2, and returns an integer indicating the
result of the comparison. If the two strings are equal, it returns a zero value. If the two strings are
not equal, the function returns the difference between the first two unequal characters in the two
strings. The returned value will be positive it s1 is lexicographically greater than s2, and negative
if s1 is less than s2. Thus, the strcmp() function is the equivalent of a relational operator for
strings.

The second function we need is to join two strings. Again, the standard library provides a
function:

STRING strcat(STRING s1, STRING s2);

which concatenates (i.e. joins) the two strings, s1 and s2, and stores the result in s1. It
returns s1, i.e. the pointer to the combined string. This is the equivalent of the addition operator
for strings. The prototypes for these and other standard library string functions are in a header
file, string.h.

We can now use these functions to implement our program as shown in Figure 11.4. We first

11.2. LIBRARY STRING FUNCTIONS 443

/* File: text.c
Program reads strings until a blank line is entered. The first string
read is used as a control. If the other strings are not equal to the
control string, they are concatenated to the buffer but separated by a
space. It prints out the buffer at the end. A debug statement prints the
accumulated string at each step and its length.

*/

#include <stdio.h>
#include <string.h>
#define SIZE 100
#define DEBUG

main()
{ char s[SIZE], control[SIZE], text[SIZE];

printf ("***Build Text: Exclude Control String#*x*\n\n");
printf ("Type control string: ");

gets(control);

strcpy(text, ""); /* length of empty string is zero */
printf ("Type text lines, RETURN to quit\n");

while (*gets(s)) {
if (strcmp(s, control) !'= 0) {

if (strlen(text))
strcat(text, " ");

strcat (text, s);
#ifdef DEBUG
printf("debug:length of buffer is %d: %s\n",

strlen(text), text);
#tendif

printf("Final buffer is: ");
puts(text);

Figure 11.4: Code using strcmp() and strcat()

444 CHAPTER 11. STRING PROCESSING

read a string into the variable, control, and initialize the buffer, text, to an empty string. The
while loop then reads strings until a blank line is entered. Since the expression gets(s) reads a
line of text and returns the destination pointer, s, *gets(s) is the first character of the string
read into s. The expression is True if any non-empty string is entered. It is False when the first
character of s is a NULL which occurs when an empty line (just a RETURN) is entered.

For each string read into s, we compare it with control. If they are not equal, we concatenate
text and s. A space is concatenated to text if it is not empty, so that the concatenated strings
are separated by a space. We have included a debug statement to print the accumulated buffer
and its length. When the input terminates, the accumulated string, text, is printed. Here is a
sample session:

%*%Build Text: Exclude Control Stringk

Type control string: Hello

Type text lines, RETURN to quit

Hello

debug:length of buffer is 0:

earth

debug:length of buffer is 5: earth

calling

debug:length of buffer is 13: earth calling

moonbase,

debug:length of buffer is 23: earth calling moonbase,
hello

debug:length of buffer is 29: earth calling moonbase, hello

Final buffer is: earth calling moonbase, hello

Observe that string comparisons are case distinct, e.g. hello is not the same as Hello, so the
first Hello in the input is discarded, while the second, hello, is not.

The function, strecmp(), can be used when we wish to search for a particular string or when
we wish to order strings in lexicographic or dictionary order. Unfortunately, upper case and lower
case values of a letter are not equal as shown above; therefore, we must change all strings to the
same case (e.g. by using tolower()) for a case independent comparison.

To understand how these library functions work, let us write our own versions of functions
stremp () and strcat (), beginning with our_strcmp(). First, let us look in a little more detail
of “what” stremp() does. Given two strings, the comparison proceeds character by character
until two unequal characters are encountered, or both the strings are exhausted. When two
unequal characters are encountered, their difference is returned. If no unequal characters have
been encountered when both strings have reached NULL, the two strings are identical, and zero is
returned. Here are some examples of results using strcmp(stringl, string2):

11.2. LIBRARY STRING FUNCTIONS 445

/* File: str.c - continued
Compares strings s and t, returns difference of first
unequal characters or returns zero.

*/
int our_strcmp(STRING s, STRING t)
{
while (*s) A /* terminate when s is exhausted */
if (xs '= %xt) /* if unequal, break loop */
break;
S++; /* traverse the two strings */
t++;
t
return *s - *t; /* return the difference of characters */
t

Figure 11.5: Code for our_strcmp

stringl string2 returned value comment
hawaii hawaiian 0-"a negative
hilo hawaii -] positive
hawaii hawaii 0 Zero
hawhaw hawaii h - A’ positive
Hawaii hawaii "H’ - ’h’ negative
hawl23 hawaii - negative

We can model our algorithm on this behavior of stremp(). We traverse both strings until
we arrive at a terminating NULL in either one. During traversal, we examine the corresponding
characters in the strings to see if they are unequal. If so, we terminate the traversal loop. Other-
wise, we continue the process. When the loop is terminated, we return the difference between the
characters where we left off in the two strings.

Figure 11.5 shows the code implementing this algorithm. The while loop traverses strings s and
t terminating when s points to a NULL character. Within the loop, the corresponding characters
of the two strings are compared. If unequal characters are encountered, the loop is terminated,
and the difference between the characters is returned. If the loop terminates because *s is zero,
then no unequal characters have been encountered so far, but the string t may or may not be
exhausted. In either case, *s - *t,i.e 0 - *t is returned. In particular, if t points to NULL (the
string t is also exhausted), then the two strings are equal and zero is returned. Otherwise, the
difference between the first unequal characters is returned. Note, we do not need to test for the
end of the string t in the while condition. If t terminates before s, then the NULL at the end of
string t will not compare equal to *s, and the loop will terminate anyway.

446 CHAPTER 11. STRING PROCESSING

/* File: str.c - continued
Concatenates s and t by appending t to s. Returns
pointer to s. s must point to a large enough array to accommodate the
concatenated string.

*/
STRING our_strcat (STRING s, STRING t)
{ STRING p;
p = s; /* save pointer s */
while (*s) /* increment s until it points to NULL */
s++;
strepy (s, t); /* copy t into s */
return p; /* return saved pointer */
by

Figure 11.6: Code for our_strcat()

To write our_strcat (), we must append the second string to the end of the first string; so we
must traverse the first string until we find the NULL. We can then copy the second string at this
point in the first using strcpy (). The function returns the pointer to the destination string, i.e.
the beginning of the first string. Since the function must return a pointer to the original string, s,
we save the original pointer in a variable, p. We then increment s until it points to the terminating
NULL. We then copy t into s starting at the NULL character position using strcpy(), and return
the saved pointer, p. This function performs the same task as does strcat().

11.2.4 String Conversion Functions

Besides the functions for manipulating strings discussed in the previous sections (and others not
discussed, but presented in Appendix C), the standard library provides several functions for con-
verting the character (ascii) information in a string to other data types such as integers or floats.

We will illustrate the use of one such function, atoi(), by modifying our function getint ()
that we wrote in Chapter 4. Recall, this function reads the next valid integer from the standard
input character by character, skipping over any leading white space, converts the character se-
quence to an integer representation, and returns the integer value. The prototype for this function
is:

int getint(void);

In our previous version of this function, we made it robust enough to detect when EQF or invalid
(non-digit) characters are present in the input. Here we will extend the utility of getint () to read
the next white space delimited item in the input, and convert it to integer form, this time allowing
a leading + or - sign, and give the user the opportunity to re-enter data for illegal character errors.

11.2. LIBRARY STRING FUNCTIONS 447

GETINT: Write a program that reads only a valid integer. If there is an error in entering an
integer, it detects the error and allows the user to re-enter the data.

The program driver is quite simple; it calls the function getint () that returns a valid integer
read from the standard input. The driver then prints the integer returned by the function. Here
is the algorithm for getint():

initialize valid to False

while not a valid string
read a string s
set valid to True if s represents a valid integer

if valid

return an integer represented by the string s
else

print an error message

The function reads in the input as a string, and checks if it is a valid digit string for an integer.
To check if a string s is a valid integer string, we examine whether it consists of only digits with,
perhaps, a leading unary sign (+ or -). The following algorithm sets valid to True if s represents
a valid integer:

if *s is ’+’ or ’-’

valid = digitstr(s + 1);
else

valid = digitstr(s);

If the first character of s is a unary sign, check the rest of the string (starting as s + 1) for all
digits; otherwise check the entire string s for all digits.

If s is a valid digit string, the function returns an equivalent integer using the standard library
function, atoi(). The call atoi(s) returns the integer represented by the string s. The function
atoi() has the prototype (included in stdlib.h):

int atoi(STRING s);

It s is not a valid string, the user is prompted to type the input again.

To check if all characters in a string are digits, getint () uses the function digitstr(). The
algorithm modules are combined and implemented in a program shown in Figure 11.7.

The driver gets an integer and prints it. The function getint () reads the next white space
delimited string in the input using scanf (). If the first character is a unary operator, we check
for digits string starting at the pointer s + 1; otherwise, we check starting at the pointer s. The
flag, valid, stores the value returned by digitstr(). If valid is True, we use atoi() to return
the integer represented by s; otherwise, we print a message prompting the user to re-enter the
integer, flush any remaining characters on the input line, and read the new input. The flag valid
is initialized to False, and the loop continues as long as valid remains False, i.e. as long as a valid
integer is not entered.

The function digitstr() traverses the string until a NULL appears. If a non-digit is encountered
anytime during traversal, it returns False; otherwise, at the end of traversal, it returns True. It
uses the library function, isdigit () to check if a character is a digit.

A sample session is shown below:

448 CHAPTER 11. STRING PROCESSING

/* File: intchk.c
This program reads and prints an integer. It detects errors in
input and asks the user to retype.

*/

#include <stdio.h>

#include "tfdef.h" /* defines TRUE, FALSE *.
#include <stdlib.h> /* prototype for atoi() */

#include <ctype.h>
#define SIZE 100
main()
{ int n;
printf ("***Valid Integer Input*+**\n\n");
printf ("Type an integer: ");
n = getint();
printf("Integer is %d\n", n);
by
/* Function gets a valid integer. */
int getint(void)
{ char s[SIZE];
int valid = FALSE; /* flag for valid string */

while('valid) {

scanf ("%s",s); /* read a string delim by ws */
if (xs == ’+’ || *s == ’-’) /% if first char is + or -, */
valid = digitstr(s + 1); /* check rest of string; */
else /* otherwise, */
valid = digitstr(s); /* check the entire string */
if (valid) /* if a valid string */
return(atoi(s)); /* return its equivalent integer */

/* otherwise, */
printf ("***Error in input\n");/* print an error mesg */
printf ("Re-enter your integer: ");
while(getchar() '= ’\n’); /* flush remainder of input */

}

/* File: str.c - continued */

/* Checks if a string t is all digits x*/
int digitstr(STRING t)

{
while (*t)
if (lisdigit(*t)) /* if any character in t is */
return FALSE; /* NOT a digit, return FALSE */
else t++; /* else point to next char. */
return TRUE; /* if all chars are digits, return TRUE */
t

Figure 11.7: Code for getint ()

11.2. LIBRARY STRING FUNCTIONS 449
%*%Valid Integer Inputx

Type an integer: [23e
*kkError in input

Re-enter your integer: =123
*kkError in input

Re-enter your integer: -+123
*kkError in input

Re-enter your integer: -123
Integer is -123

11.2.5 File I/O with Strings

Earlier in this chapter, we described library functions to do string I/O with the standard input
and output. The library also provides functions to do I/O with files. Here we will illustrate the
use of these functions with our next task; to search for the presence of a string in the lines of a
text file.

GETLNS: Search for a control string in the lines of a file. Each line that contains the control
string is to be written to an output file and to the standard output.

The algorithm is written easily if we write a function, srchstr (), that searches for the presence
of one string in another. Here is the algorithm:

get the control string control
open files

while not EOF, read a line s from the input file
if srchstr(s, control) is True
then write the line to output file and stdout

We could use character 1/O to read from an input file, but it is easier to use library string 1/0O
functions: fgets() and fputs().

int fgets(STRING s, int n, FILE *fp);
int fputs(STRING s, FILE *fp);

These functions are similar to gets() and puts() with minor differences. The function
fgets() reads a string from a stream, fp, into a buffer, s. The maximum size, n, of the string
buffer must be specified to fgets () and must allow for a terminating NULL character. The function
reads a string until a newline character is encountered or the specified maximum size of buffer
is reached. It adds the terminating NULL, but it does NOT strip the newline character as does
gets(). The NULL is added after the \n character and fgets() returns the buffer pointer if
successful, or NULL otherwise.

The function fputs() outputs a string to a stream fp. It strips the terminating NULL from
the string, but does NOT add a newline character as does puts(). The function returns the last
character output if successful, EOF otherwise. The prototypes for these functions are included in
stdio.h.

450 CHAPTER 11. STRING PROCESSING

/* File: srchstr.c

This program searches for a string in an input file. Every line
that contains the string is printed out.

*/

#include <stdio.h>

#include "tfdef.h"

#include "strtype.h"

#define SIZE 100

main()

{ FILE *input, *output;
char infile[15], outfile[15];
char s[SIZE], control[SIZE];

printf ("***String Search***\n\n");
printf ("Type a string to be searched for: ");
gets(control);

printf("Input file : ");

gets(infile);

printf ("Output file : ");

gets(outfile);

input = fopen(infile, "r");

if (input == NULL) {
puts("*** Can’t open input file **x'");
exit (0);

t

output = fopen(outfile, "w");

if (output == NULL) {
puts("x*x* Can’t open output file ***");
exit (0);

while (fgets(s, SIZE - 1, input))
if (srchstr(s, control)) {

puts(s);
fputs(s, output);

fclose(input);
fclose(output);

Figure 11.8: Driver for Text Searching Program

11.2. LIBRARY STRING FUNCTIONS 451

/* File: srchstr.c - continued */
/* Function tests if str is in s */
int srchstr(STRING s, STRING str)

{
while (*s)
if (compare(s, str)) /* if str is at the start of s */
return TRUE; /* return True */
else s++; /* otherwise, go to the next pos. */
return FALSE; /* string exhausted, return False */
t

Figure 11.9: Code for srchstr()

The program driver for our task is easy to write as shown in Figure 11.8. The program driver
first reads the control string to search for. It then opens the input and output files. The while
loop reads lines from the input file until end of file. Each line read is tested by srchstr() for
the presence of the control string. If the control string is present in the line, it is written to both
stdout and the output file. We will need TRUE and FALSE definitions for srchstr(), so we have
included the header file, tfdef .h.

The function, srchstr() traverses the string, s, and tests if the control string is present at
each position in s. If it is present, it returns TRUE; otherwise, it goes to the next position. The
function, srchstr(), uses a function, compare (), to see if a string is present at the start of another
string. This is different than strcmp () since the string we are searching in may not terminate at
the end of the control string. The code for srchstr() is shown in Figure 11.9. Given a string, s,
and a control string, str, it starts at the first character of s, and calls compare() to see if str is
present in s starting at the first character. If it is, it returns TRUE; otherwise, it increments s to
point to the next character. If the string is exhausted, it returns FALSE.

The code for compare () is shown in Figure 11.10. It traverses str and s until str is exhausted.
If it encounters corresponding characters that are not the same in the two strings, it returns FALSE.
When str is exhausted, it returns TRUE. Here is a sample session:

**¥*%3tring Search

Type a string to be searched for: while
Input file : ucstr.c

Output file : xyz

while (gets(s)) {

The file ucstr.c contains only one line with the string while in it. That line is written to the
file xyz and to stdout.

For this task, we have written our own function to compare str with the first several characters
in string s because we do not expect s to terminate at the end of the control string, str. If n is

452 CHAPTER 11. STRING PROCESSING

/* File: srchstr.c - continued */
/* Function tests if str is at the start of s */

compare (STRING s, STRING str)

{
while (*str)
if (kstr++ != *s++)
return FALSE;
return TRUE;
}

Figure 11.10: Code for compare()

the length of str, then we require a comparison of the first n characters in the two strings. There
is a standard library function, strncmp (), which does just that:

int strncmp(STRING s, STRING t, unsigned n);

It compares the first n characters of s and t, and returns the difference of the first unequal
characters, or it returns zero if they are all equal, just like stremp(). So, instead of compare(s,
str), we could have used:

strncmp(s, str, strlen(str))
A similar library function, strncpy (), is also available:
STRING strncpy(STRING s, STRING t, unsigned n);

which copies n characters from the source string, t, into the destination string, s, without adding
a terminating NULL. It returns s.

We close this section by emphasizing the difference between gets(s) and fgets(s, n, fp).
Let us assume an input string ”Hawaii\n” is in the standard input, and that the string s is large
enough to accommodate the example string with n selected appropriately. The string, s is shown
below after the use of each function:

gets(s): Hawaii\O /* newline stripped, NULL appended */
fgets(s, n, stdin): Hawaiil\n\0 /* newline present, NULL appended */

Similarly, the output of the functions puts(s) and fputs(s, fp) is shown below:

puts(s): Hawaiiln /* NULL stripped, newline appended */
fputs(s, stdout): Hawaiiln /* NULL stripped */

11.3. MORE EXAMPLE PROGRAMS 453

11.3 More Example Programs

In the previous section we have discussed some of the string utility functions provided by the C
standard library and illustrated their use with examples. Additional string functions can be found
in Appendix C. We close this chapter with a few additional example programs making use of
these string processing functions.

11.3.1 Palindromes

Our next task is:
PALI: Read strings and check if each is a palindrome.
A palindrome is a string that reads the same forwards and backwards, for example:

able was 1 ere 1 saw elba

The algorithm is simple: compare the reverse of the string with the original string. If they are the
same, the string is a palindrome.

while not EOF, read a string s
copy reverse of s into t

if s and t are equal,

s 1s a palindrome
else

s 1s not a palindrome

The driver follows the algorithm closely, as seen in Figure 11.11. We will use a function,
revepy (), to copy the reverse of the string.

We must write the function revepy () to copy one string into another in reverse order. To see
how the algorithm for this function should proceed, we will work with the indices in the source
and destination strings as shown below:

src: hello\0
sind: <—4

dest: olleh\0
dind: 0—>

The string, src, is shown with the terminating NULL and the source index, sind, must start at
the last character of src and decrease as each character is copied. In the destination string, dest,
the index, dind, must start at 0 and increase as each character is copied. When the source index
becomes negative, all characters have been copied in reverse order from the source. After all the
characters are copied, a terminating NULL must be added to the destination string. Here is the
algorithm:

initialize sind to the last index of src and dind to O
while sind is >= 0

copy from src to dest

increment dind and decrement sind
add a NULL to dest

454 CHAPTER 11. STRING PROCESSING

/* File: pali.c
Program reads a string and tests whether it is a palindrome.
It repeats the process until EOF.

*/

#include <stdio.h>
#include <string.h>
#include "strtype.h"
#define SIZE 100

main()
{ char s[SIZE], t[SIZE];

printf ("***Palindrome Test***\n\n'") ;
printf ("Type strings, EOF to quit\n");

while (gets(s)) {
revepy(t, s); /* copy reverse of s into t */

if (strcmp(s, t) == 0)

printf("%s: a palindrome\n", s);
else

printf("%s: not a palindrome\n", s);

Figure 11.11: Driver for Palindrome

11.3. MORE EXAMPLE PROGRAMS 455

/* File: pali.c - continued
Function copies string src in reverse order into string dest.

*/

void revcpy(STRING dest, STRING src)
{ int sind, dind = 0; /* dest index is 0 */

sind = strlen(src) - 1; /* source index at last character */

while (sind >= 0) /* loop while source index is non-neg. */
dest[dind++] = src[sind--]; /* copy character, and update */
dest[dind] = NULL; /* append a NULL */

Figure 11.12: Code for revepy ()

The function is shown in Figure 11.12.
Here is a sample session:

***Palindrome Test**xx*

Type strings, EOF to quit

this is it

this is 1t: mnot a palindrome

able was i ere i saw elba

able was 1 ere 1 saw elba: a palindrome

"D

Our function, revepy (), will work fine as long as the source and destination strings are different
strings. We could write a function to reverse a string in place. We can follow the same procedure of
copying from the source index to the destination index; however, since the source and destination
strings are the same string, characters at source index as well as at destination index must be
swapped rather than simply assigned. Otherwise, copying a character from the source index to
the destination index will overwrite a character.

s: hello\0
sind: <—4
dind: 0—>

new s: olleh\0

Furthermore, the characters need only be swapped as long as source index is greater than desti-
nation index. When the source index is less than the destination index, all characters have been
swapped. If the two indices are equal, the corresponding characters are the same and need no
swapping. Finally, a terminating NULL need not be added since it is already present in the correct
position. Figure 11.13 shows the code for the function revself ().

456 CHAPTER 11. STRING PROCESSING

/* File: str.c - continued
Function reverses string s in place.

x/
void revself (STRING s)
{ int c, sind, dind = 0; /* c used as temp. storage during a swap */
/* dest index at 0 */
sind = strlen(s) - 1; /* src index at last char. */

while (dind < sind) { /* loop while chars need swapping */

¢ = s[dind]; /* swap characters, */
s[dind++] = s[sind]; /* and update indices */
s[sind--] = c;

Figure 11.13: Code for revself ()

11.3.2 Words

Our next task is to break up a string into words delimited by white space.

WDS: Read strings; break up each string into its constituent words.

The algorithm starts by skipping over leading white space. If the string is not exhausted, a
word starts at that position and continues until the next white space. Here is the algorithm.

while not EOF, read a string s
initialize string index to 0

while not NULL
skip over leading white space
initialize word index to O

copy the next word into wd
terminate word with a NULL
print the word

In our algorithm, a word is any sequence of characters delimited by white space. Figure 11.14
shows the program. It reads lines until EOF scanning each line until a NULL is reached. Each scan
first skips over white space, then copies a word into a string, wd, while characters are non-white
space and non-NULL. A terminating NULL is added to the word and it is printed. Here is sample
session:

*+x*xWords in Stringskk

11.3. MORE EXAMPLE PROGRAMS 457

/* File: strwds.c
This program reads strings until EOF. For each string read, it copies each
of the words into another string and prints it.

*/

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#define SIZE 80
#define WDSIZE 40

main()
{ char s[SIZE], wd[WDSIZE];
int i, i

printf ("***Words in Strings***\n\n");
printf ("Type strings, EOF to quit\n");

while (gets(s)) { /* read lines until EOQOF x/
i=0;
while (s[i]) { /* repeat while s[i] is not NULL */

while (isspace(s[i])) /* skip leading white space */
14+

j =0; /* initialize for a new word */

while (s[i] && 'isspace(s[i])) /* while non-NULL AND non-white */

wd[j++] = s[i++]; /* copy word */
wd[j] = NULL; /* terminate string */
puts(wd); /* print word */

Figure 11.14: Code for separating words from a string

458 CHAPTER 11. STRING PROCESSING

Type strings, EOF to quit
This is a test

This

is

a

test

"D

11.3.3 Substrings

In string manipulations, it is frequently necessary to find a substring of a string. A substring is
a string that is part of another string. It can be parameterized by specifying where the substring
starts and how long it is. Our next task is to write a program that finds a substring of a string at
a given position and of a specified size.
SUBSTR: Read substring parameters. For each line of input, find the appropriate substring.
For example, consider the string:

Source string: This is a test string\0

(The terminating NULL is shown explicitly). A substring of this string starting at index position 2
and containing 5 characters is:

Destination string: is is\0

We will write a function to extract such a substring. The function must be passed several argu-
ments: the source string (pointer), a destination string where the specified substring is to be copied
(pointer), the starting position of the substring in the source string (integer), and the number of
characters for the substring (integer).

It may or may not be possible for the function to extract the string. For example, if the
starting position is outside the string, no substring can be extracted. We will assume that the
function returns the destination string (pointer) if successful in extracting a string; otherwise, it
returns a NULL pointer to indicate failure. We will also assume that the function will extract as
many characters as possible upto the specified number. The function prototype should be:

STRING substr(STRING src, STRING dest, int startpos, int nchrs);

The parameter, src, points to the source string, and dest points to an array where the
substring of src is to be copied. The next two arguments provide the starting position and the
number of characters. The calling function must allocate memory for the destination string. The
starting position, startpos is an index into the array — it must be 0 or greater. The parameter,
nchrs is the maximum number of characters to copy into the substring.

Since the program depends primarily on substr(), let us first develop an algorithm for it.
The function must start copying characters from the starting position startpos. If we use an array
index, src[startpos] accesses the character at the start position if startpos is in the source
string. If startpos is not in the source string, we will return a NULL to indicate failure to extract
a substring.

Next, we must copy up to a maximum of nchrs characters into dest. When the source string
is exhausted or nchrs characters are copied, we stop the copy process and append a NULL to the

11.4. COMMON ERRORS 459

substring. If even one character is copied into the substring, we will return the destination pointer.
Here is the algorithm:

if startpos >= strlen(src)
return NULL

J =05

while j 1s less than nchrs and src is not exhausted
copy a character: dest[j] = src[startpos + j]
increment j

terminate dest with NULL
return dest

The program driver reads the start position and the number of characters. It then reads strings
until end of file and finds the substring for each string if possible. The code for the driver and
substr() is shown in Figure 11.15. The program prints the substring if it can be extracted:;
otherwise, it prints a message. Here is a sample session:

**x*Substring Extractionkk*

Type start position and number of characters: 25
Type text lines, EOF to quit
this is a test string

is 1is

hello

llo

well

11

he

Substring cannot be extracted
then

en

"D

11.4 Common Errors

1. Failure to include library header files, e.g. string.h. Prototypes for library string routines
are not included resulting in default assumptions and consequent problems.

2. We have already discussed common string related errors in Chapter 7 and in this chapter.
Always allocate space for an array where a string is to be stored. Once space is allocated
for a string, pointer variables can be used to access strings.

3. Array names must not be used as Lvalues.

460

CHAPTER 11. STRING PROCESSING

/* File: substr.c
Program extracts a substring and prints it.
*/
#include <stdio.h>
#include "strtype.h"
#define SIZE 80
STRING substr(char src[], char dest[], int startpos, int nchrs);

main()
{ char s[SIZE], sub[SIZE];
int start, n;

printf ("***Substring Extraction***\n\n");

printf ("Type start position and number of characters: ");
scanf ("%d %d%*c", &start, &n); /* suppresses newline */
printf ("Type text lines, EOF to quit\n");

while (gets(s)) {
if (substr(s, sub, start, n)) /* if substring, */
puts(sub); /* print it */
else
printf ("Substring cannot be extracted\n");

/* Function copies a substring of src, starting at i and n characters
long, into dest. It returns dest if success; NULL otherwise.

*/

STRING substr(STRING src, STRING dest, int startpos, int nchrs)

{ int j;

if (startpos >= strlen(src))
return NULL;

for (j = 0; j < nchrs && src[startpos + jl; j++) {
dest[j] = srclstartpos + jl;
by

dest[j] = NULL;
return dest;

Figure 11.15: Code for the substring program

11.5. SUMMARY 461

11.5 Summary

This chapter has discussed a very common data type in C programs: the string. We have briefly
introduced the concept of an abstract data type as consisting of a data declaration and a set of
operations on data items of that type. We have defined a user defined type, STRING, for string
data and used it throughout the chapter. (While our string data type does not completely satisfy
the definition of an abstract data type, the basic concept is seen).

Many common operations on string data are provided through the standard library. We have
described a few of these; in particular functions for I/O: gets () and puts(), and file [/O: fgets ()
and fputs() whose prototypes are defined in stdio.h. In addition the functions for string ma-
nipulation, strlen() and strcpy() as well as string operation, strcmp() and strcat(), have
been described. Other functions described include atoi(), strncmp(), and strncpy().

Throughout the chapter we have shown numerous examples of programs for string processing.

462 CHAPTER 11. STRING PROCESSING

11.6 Exercises

L. If the characters in an array, s are: string\0 of characters\0

What does each of the following print? Show each character.

printf("%s", s);
puts(s);
fputs(s, stdout);

2. If the input of characters is:
string of characters\n
What does each of the following read? Show each character, including NULL.

scanf ("%s", s);
gets(s);
fgets(s, sizeof(s) - 1, stdin);

3. Assume s is a string array. Under what condition is each of the following True?

s
*3

I%g
gets(s)
*xgets(s)
lxgets(s)

Find and correct any errors in the following and determine the outputs where feasible. The
input is shown when appropriate.

4. main()
{ char s[80], t[80];

s = "this is a message'";
if (s == 1)

printf ("Equall\n");
else

printf ("Not equall\n");
puts(s);

11.6. EXERCISES

10.

. main()

{ char s[80], t[80];

scanf ("%s", s);
printf("%s", s);

by
Input: This is a message
. main()
{ char *s;
s = "this is a message'";
printf("4d Y%s\n", s, s);
puts(s);
by
. main()

{ char *s;

gets(s);
puts(s);
+
. main()

{ char s[80];

while (xs) {
putchar(*s);
s++;

b

b

. main()

{ char *s;

strcpy(s, "hello");
puts(s);
}

main()
{ char name[80];

name = get_str(name) ;

puts(s);
+

char *get_str(char *s)

463

464 CHAPTER 11. STRING PROCESSING

gets(s);
return s;

11. int cmpstr(char *s, char *t)

if (s == t)
return TRUE;
else
return FALSE;

11.7. PROBLEMS 465

11.7 Problems

Write program drivers for each of the following. The driver should read appropriate data until

end of file, call the functions described below, and print the results.

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Write a function that returns the index where a character, c, occurs in a string, s. The
function returns -1 if ¢ is not present in s. Use array indexing.

Repeat 1 using pointers.

. Write a function that returns the index where a character, c, occurs in a string s; the search

for c starting at a specified index, 1 in s. The function returns -1 if ¢ is not present in s
starting at the index, i. Use array indexing.

Repeat 3 using pointers.

. Write a function, how many (), that returns the number of times a character, ch, occurs in a

string, s. Use array indexing.

Repeat 5 using pointers.

. Write a function that substitutes a new character, newc, for the first occurrence of a char-

acter, ¢, in a string, s. Use array indexing.

Repeat 7 using pointers.

. Write a function that substitutes a new character, newc, for every occurrence of a character,

c, in a string, s. Use array indexing.
Repeat 9 using pointers.

Rewrite the function, our_strcpy () in Section 11.2.2 so that it properly returns the pointer
to the destination string.

Write a function that takes two strings, s and t, as arguments. Copy string s into t, but
remove all white space and punctuation. Use array indexing.

Repeat 12, but use pointers.

Write a function that takes a string of characters and removes all white space and punctuation
in that same string. Use array indexing.

Repeat 14 using pointers.

Write a function, xwslead (), that removes all leading white space from a string. Use array
indexing.

Repeat 16 using pointers.

Write a function, xwstrail(), that removes all trailing white space from a string. Use array
indexing.

466

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

CHAPTER 11. STRING PROCESSING

Repeat 18 using pointers.

Write a function, xws (), that removes all leading and trailing white space from a string. Use
array indexing.

Repeat 20 using pointers.
Write a function, squeeze (), that removes all white space from a string. Use array indexing.
Repeat 22 using pointers.

Write a function, compare(), that takes two strings as arguments and compares them for
equality after leading and trailing blanks are removed. If the strings are equal after the
leading and trailing blanks are removed, the function returns True. Otherwise, it returns

False.

Write a function, compstrip(), that takes two strings as arguments and compares stripped
versions of them. A stripped string is one from which all white space and punctuation are
removed. Function returns True if the strings are equal after they are stripped.

Write a function, palindrome() that checks if a given string is the same forwards and
backwards. Use pointers.

Write a function that checks if a string is a palindrome ignoring all white space. Example:
1 ia wah hawaii

Write a function that takes two string arguments, s and t. Copy s into t in reverse order,
except that a sequence of white space is squeezed to a single space.

Write a function that takes a single string argument, and reverses the string itself, except
that white space is squeezed to a single space.

Write a function that removes the first word from a string. Write a program that uses the
function to remove a specified number of leading words from a string.

Write a function that removes the last word in a string. Write a program that uses the
function to remove a specified number of trailing words from a string.

Write a function that takes two strings, s1 and s2 as arguments. It returns the index where
s2 occurs in 81, or it returns -1 if 82 is not in s1.

Write a function that substitutes a new string, repl_str, for the first occurrence of a string,
str in a string, src.

Write a function that replaces a new string, repl_str, for every occurrence of a string, str,
in src.

Write a function that detects the presence of a whole word, wd, in a string, s.

11.7. PROBLEMS 467

36

37.

38.
39.
40.
41.
42.

Write a function that converts a string into an integer. The conversion is terminated when
a non-digit is encountered.

Write a function that converts a string into a float. The conversion is terminated when a
character that does not belong in a decimal number is encountered.

Write a function that converts an integer to a string.

Write a function that converts a float to a string.

Write a function that converts a string of binary digits to an integer.

Write a function that converts an unsigned integer into a string of binary digits.

Write a function, nexttok(), that gets the next token from a string, starting at a specified
array index, called cursor. The function returns the new value of cursor, the token itself,
and the type of the token. Leading white space is skipped. A longest valid token is built as
long as the characters belong to a token type. The token is complete when a character that
does not belong to a token type being built is encountered.

A valid token type is either an identifier, an integer, a float, an invalid, or an EOS, end of
string. An identifier starts with a letter, and may be followed by letters and/or digits. An
integer starts with a digit, and may be followed by digits. A float must start with a digit,
may be followed by digits, may be followed by a decimal point, and may be followed by a
sequence of digits. A character other than white space, letters, and digits is an invalid type
token containing that one character. EOS type of token is returned when the NULL character
is reached.

Write a program that reads in lines of input from a file, and use the above function to print
out the tokens in each line until EOF.

468 CHAPTER 11. STRING PROCESSING

Chapter 12

Structures and Unions

So far, we have seen one kind of compound (user defined) data type — the array and in Chapters
7 and 9 have seen how we can group information into one common data structure. However, the
use of arrays is limited to cases where all of the information to be grouped together is of the same
type. In this chapter we present the other compound data type provided in C — the structure,
which removes the above limitation. We will discuss structures, pointers to structures, and arrays
of structures. As with our previous data types, we will see how such structures can be declared;
how information in them can be accessed, and how we can pass and return structures in functions.
We will also see how arrays of structures are sorted and searched. We illustrate these points with
several example programs.

Finally, we will introduce unions which are similar to structures; however, the elements in the
union share the same memory cells. In a union, different types of data may be stored in a variable
but at different times.

12.1 Structures

In C, a structure is a derived data type consisting of a collection of member elements and their
data types. Thus, a variable of a structure type is the name of a group of one or more members
which may or may not be of the same data type. In programming terminology, a structure data
type is referred to as a record data type and the members are called fields. (We will use these
two terms interchangebly).

12.1.1 Declaring and Accessing Structure Data

As with any data type, we need to be able to declare variables of that type. In particular for
structures, we must specify the names and types of each of the fields of the structure. So, to
declare a structure, we need to describe the number and types of fields in the form of a template,
as well as declare variables of that type. We illustrate with an example: a program that maintains
temperatures in both celsius and fahrenheit degrees. A variable, temp, is to be used to maintain
the equivalent temperatures in both celsius and fahrenheit, and thus requires two fields, both of
them integers. We will call one field ftemp for fahrenheit temperature and the other ctemp for
celsius. The program, shown in Figure 12.1, reads a temperature to the ftemp field of the variable,
temp, and uses a function, £_to_c(), to convert the temperature from fahrenheit to celsius and
store it in the ctemp field. In looking at this program, we see that the variable temp is declared

469

470 CHAPTER 12. STRUCTURES AND UNIONS

/* File: fctemp.c
Program reads temperature in fahrenheit, converts to celsius, and
maintains the equivalent values in a variable of structure type.
*/
#include <stdio.h>
main()
{ struct trecd {
float ftemp;
float ctemp;
} temp;
double f_to_c(double f);
char c;

printf ("***xTemperatures - Degrees F and Cx*x\n\n");
printf ("Enter temperature in degrees F : ");

scanf ("4f",&temp.ftemp) ;

temp.ctemp = f_to_c(temp.ftemp);

printf("Temp in degrees F = J3.1f\n", temp.ftemp);
printf("Temp in degrees C = 3.1f\n", temp.ctemp);

/* This routine converts degrees F to degrees C */
double f_to_c(double f)

{
return((f - 32.0) * 5.0 / 9.0);

Figure 12.1: Code for Simple Structure Program

