
����� BLOCK INPUT�OUTPUT ���

�� File� blkcopy�c

The program uses block I�O to copy a file�

��

�include �stdio�h�

main�	


 signed char buf��

��

const void �ptr � �void �	 buf�

FILE �input� �output�

size�t n�

printf�����File Copy � Block I�O����n�n�	�

printf��Input File� �	�

gets�buf	�

input � fopen�buf� �r�	�

if ��input	 


printf��Unable to open input file�n�	�

exit�
	�

�

printf��Output File� �	�

gets�buf	�

output � fopen�buf� �w�	�

if ��output	 


printf��Unable to open output file�n�	�

exit�
	�

�

while ��n � fread�ptr� sizeof�char	� �

� input		 �� �

	

fwrite�ptr� sizeof�char	� �

� output	�

fwrite�ptr� sizeof�char	� n� output	�

close�input	�

close�output	�

�

Figure ����� Copying a File Using Block I�O



��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

�� File� bincopy�c

This program copies a binary file� Standard files are not allowed�

��

�include �stdio�h�

main�	


 int c�

char s�����

FILE �input� �output�

printf�����Binary File Copy � Character I�O����n�n�	�

printf��Input File� �	�

gets�s	�

input � fopen�s� �rb�	�

if ��input	 


printf��Unable to open input file�n�	�

exit�
	�

�

printf��Output File� �	�

gets�s	�

output � fopen�s� �wb�	�

if ��output	 


printf��Unable to open output file�n�	�

exit�
	�

�

while ��c � fgetc�input		 �� EOF	

fputc�c� output	�

close�input	�

close�output	�

�

Figure ���	� File Copy Program for Binary Files



����� TELL AND SEEK ��


���� Tell and Seek

The �le functions described in the last section� as well as the formatted �le I�O functions� read
and write data sequentially from the current position in the �le� This position in the stream is
one of the pieces of information stored in the FILE data structure which we get a pointer to when
the �le is opened� The standard library provides a function to determine the current position�
ftell�	� The position returned from ftell�	 is in terms of the number of bytes o
set from the
beginning of the �le� The library also provides a function which allows a program to move the
current position elsewhere in stream� fseek�	�

ftell Prototype� long ftell�FILE �stream	� in� �stdio�h�

Returns� the current �le pointer in stream measured in bytes from the beginning� If
there is an error� it returns ��L�

fseek Prototype� int fseek�FILE �stream� long offset�

int base	�

in� �stdio�h�

Returns� � if successful� nonzero on failure� �DOS returns zero even if pointer is not
repositioned��

Description� The function� fseek� sets the �le pointer for stream to a new position
that is offset bytes from the location speci�ed by base� For binary �les� offset is
the number of bytes to o
set� For text �les� offset must be zero or a value returned
by ftell�	� The value of base must be � to indicate the beginning of the �le� � for
the current position� or 	 for the end of �le� stdio�h de�nes three constants for the
base position� SEEK SET is �� SEEK CUR is �� and SEEK END is ��

Let us illustrate the use of the above functions in a simple program� Suppose we wish to write
a program that opens a �le and begins to read items from the �le� Suppose at some point� the
program requires the size of the �le� Then� after the size is determined� the program should resume
reading items from where it left o
�

The program will� read and print a number of strings from a �le� then� call a function
filesize�	 that returns the size of the �le� and �nally� resume reading and printing strings
from the �le� The program driver is shown in Figure �����

Let us now write filesize�	� which returns the size of the �le� fp� It determines the size of
the �le by moving the current position to the end of the �le and �nding the o
set of the pointer
in bytes� However� before the current position is moved to the end of the �le� the function must
save the position where it left o
� This saved position is restored by filesize�	 before it returns
to the calling program� The function is shown in Figure �����

The function �rst saves the current position in savepos� then moves the pointer to the end of
the �le� It uses 
L for o
set since the o
set must be long� Next� the function uses ftell�	 to �nd
the o
set in bytes of the current position� which is now at the end of the �le� The value of end is�
therefore� the size of the �le� Finally� the saved position is restored and the �le size is returned�
Here is a sample session�

���File Seek � File Size���

File Name� payin�dat



��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

�� File� seek�c

This program illustrates the use of fseek�	 to reposition

a file pointer� The program reads a specified number of strings

from a file and prints them� Then� the program calls on filesize�	

to print out the size of the file� After that the program resumes

reading and printing strings from the file�

��

�include �stdio�h�

�define MAX ��

long int filesize�FILE �fp	�

main�	


 int m� n � 
�

FILE �fp�

char s�MAX��

printf�����File Seek � File Size����n�n�	�

printf��File Name� �	�

gets�s	�

fp � fopen�s� �r�	�

if ��fp	

exit�
	�

printf��Number of lines in first printing� �	�

scanf���d�� �m	�

while �fgets�s� MAX� fp		 
 �� read strings ��

fputs�s� stdout	� �� print the strings ��

n���

if �n �� m	 �� if m string are printed� print file size ��

printf��Size of file � �ld�n�� filesize�fp		�

�

fclose�fp	�

�

Figure ����� Driver for Program Illustrating ftell�	 and fseek�	



����� A SMALL DATA BASE EXAMPLE ���

�� File� seek�c � continued ��

�� Returns the size of the file stream fp���

long int filesize�FILE �fp	


 long int savepos� end�

savepos � ftell�fp	� �� save the file pointer position ��

fseek�fp� 
L� SEEK�END	� �� move to the end of file ��

end � ftell�fp	� �� find the file pointer position ��

fseek�fp� savepos� SEEK�SET	� �� return to the saved position ��

return end� �� return file size ��

�

Figure ����� Code for filesize�	

Number of lines in first printing� �
�� File� payin�dat ��

ID Last First Middle Hours Rate

����������������������������������������������������������������������

Size of file � ���

� Jones Mike David �
 �


 Johnson Charles Ewing �
 ��

�� Smythe Marie Jeanne �� �


In the sample session� the �rst three lines of payin�dat are printed and then the size of the
�le is printed as 	�� bytes� Finally� the rest of the �le payin�dat is printed�

A few comments on the use of fseek�	�

For text �les� the o
set value passed to fseek�	 can be either � or a value returned by ftell�	�

When fseek�	 is used for binary �les� the o
set must be in terms of actual bytes�

���� A Small Data Base Example

A data base is a collection of a large set of data� We have seen several examples of data bases
in previous chapters� such as our payroll data and the list of address labels discussed in Chapter
�	� In our programs working with these data bases we have simply read data from �les� possibly
performed some calculations� and printed reports� However� to be a useful data base program� it
should also perform other management and maintenance operations on the data� Such operations
include editing the information stored in the data base to incorporate changes� saving the current
information in the data base� loading an existing data base� searching the data base for an item�
printing a report based on the data base� and so forth� Programs that manage data bases can
become quite elaborate� and such a program to manage a large and complex data base is called a
Data Base Management System �DBMS��



��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

�� File� lbldb�h

This file contains structure tags for labels� Label has two

members� name and address� each of which is a structure type�

��

struct name�recd 


char last�����

char first�����

char middle�����

��

struct addr�recd 


char street�����

char city�����

char state�����

long zip�

��

struct label 


struct name�recd name�

struct addr�recd address�

��

typedef struct label label�

Figure ����� Data Structure De�nitions for Label Data Base Program

In this section we will implement a rather small data base system that maintains our data base
for address labels� We will assume that there are separate lists of labels for di
erent groups of
people� therefore� it should be possible to save one list in a �le named by the user as well as to
load a list from any of these �les� The data in a list of labels is mostly �xed� however� it should
be possible to make additions and�or changes� It should also be possible to sort and search a list
of labels�

In our skeleton data base system� we will not implement sorting and searching operations �we
have already implemented a sort function for labels in Section �	���� instead� our purpose here is to
illustrate some of the other operations to see the overall structure of a DBMS� We will implement
operations to add new labels� print a list of labels� as well as loading and saving lists in �les�
The program driver will be menu driven� The user selects one of the items in the menu� and
the program carries out an appropriate task� The data structures we will use include the label

structure and a type� label� de�ned in the �le lbldb�h shown in Figure ����� The program driver
is shown in Figure �����

The list of labels is stored in the array� lbllist��� and n stores the actual number of labels�
initially zero� A new list is read by the function load�	 which returns the number of labels loaded�
A list can be edited by edit�	 which updates the value of n� Both edit�	 and load�	 must not
exceed the maximum size of the array� The functions print�	 and save�	 write n labels from the



����� A SMALL DATA BASE EXAMPLE ���

�� File� lbldb�c

Header Files� lbldb�h

This program initiates a data base for labels� It allows the

user to edit labels� i�e�� add new labels� save labels in a

file� load a previously saved file� and print labels�

��

�define MAX �



�include �stdio�h�

�include �ctype�h�

�include �lbldb�h� �� declarations for the structures ��

main�	


 char s�����

label lbllist�MAX��

int n � 
�

printf�����Labels � Data Base����n�	�

printf���nCommand� E	dit� L	oad� P	rint� S	ave� Q	uit�n�	�

while �gets�s		 


switch�toupper��s		 


case !E!� n � edit�lbllist� n� MAX	� break�

case !L!� n � load�lbllist� MAX	� break�

case !P!� print�lbllist� n	� break�

case !S!� save�lbllist� n	� break�

case !Q!� exit�
	�

default� printf��Invalid command � retype�n�	�

�

printf���nCommand� E	dit� L	oad� P	rint� S	ave� Q	uit�n�	�

�

�

Figure ����� Driver for Label Data Base Program



��	 CHAPTER ��� FILES AND THE OPERATING SYSTEM

current list�
Figure ���
 shows a partial implementation of edit�	� allowing only the addition of new labels�

It does not implement operations for deletion or change of a label� The edit�	 function presents
a sub�menu and calls the appropriate function to perform the task selected by the user� We have
included program �stubs� for the functions del label�	 and change label�	 which are not yet
implemented� The add label�	 function calls on readlbl�	 to read one label� If a label is read
by readlbl�	 it returns TRUE� otherwise� it returns FALSE� The loop that reads labels terminates
when either the maximum limit is reached or readlbl�	 returns FALSE� Each time readlbl�	 is
called� n is updated� and the updated value of n is returned by add label�	� In turn� edit�	
returns this value of n to the main driver�

The function readlbl�	 �rst reads the last name� as shown in Figure ����� If the user enters
an empty string� no new label is read and the function returns FALSE� otherwise� the remaining
informations for a label is read and the function returns TRUE�

The print�	 function calls on printlabel�	 to print a single label data to the standard
output� The functions are shown in Figure �����

Finally� we are ready to write functions load�	 and save�	� We will use fread�	 and fwrite�	
to read or write a number of structure items directly from or to a binary �le� This method of
storing the data base is much more e�cient that reading ASCII data� �eld by �eld for each label�
The code is shown in Figure ������ The function load�	 opens an input �le� and uses fread�	
to read the maximum possible �lim� items of the size of a label from the input �le� The bu
er
pointer passed to fread�	 is the pointer to the array of labels� lbllist� Finally� load�	 closes
the input �le and returns n� the number of items read� Similarly� save�	 opens the output �le�
and saves n items of label size from the bu
er to the output �le� It then closes the output �le
and returns n� If it is unable to open the speci�ed output �le� it returns �� A sample session is
shown below�

���Labels � Data Base���

Command� E	dit� L	oad� P	rint� S	ave� Q	uit

l
Input File� lbl�db

Command� E	dit� L	oad� P	rint� S	ave� Q	uit

p

Label Data�

James Edward Jones

�� Dole St

Honolulu Hi "#���

Jane Mary Darcy

�� University Ave

Honolulu Hi "#��#

Helen Gill Douglas



����� A SMALL DATA BASE EXAMPLE ���

�� File� lbldb�c � continued ��

�� Edits labels� adding labels has been implemented so far� ��

int edit�label lbllist��� int n� int lim	


 char s��
��

printf��A	dd� D	elete� C	hange�n�	�

gets�s	�

switch�toupper��s		 


case !A!� n � add�label�lbllist� n� lim	�

break�

case !D!� del�label�	�

break�

case !C!� change�label�	�

break�

default� �

�

return n�

�

�� Adds new labels to lbllist�� which has n labels� The maximum

number of labels is lim�

��

int add�label�label lbllist��� int n� int lim	




while �n � lim �� readlbl��lbllist�n���		

�

if �n �� lim	

printf��Maximum number of labels reached�n�	�

else ��n� �� EOF encountered for last value of n ��

return n�

�

void del�label�void	




printf��Delete Label not yet implemented�n�	�

�

void change�label�void	




printf��Change Label not yet implemented�n�	�

�

Figure ���
� Partial Code for Editing the Data Base



��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

�� File� lbldb�c � continued ��

�� Includes and defines included at the head of the file� ��

�define FALSE 


�define TRUE �

�� This routine reads the label data until the name is a blank� ��

int readlbl�struct label � pptr	


 int x�

char s�����

printf��Enter Last Name� RETURN to quit� �	�

gets�s	�

if ���s	

return FALSE�

else strcpy�pptr��name�last� s	�

printf��Enter First and Middle Name� �	�

x � scanf���s �s��c��pptr��name�first� pptr��name�middle	�

printf��Enter Street Address� �	�

gets�pptr��address�street	�

printf��Enter City State Zip� �	�

scanf���s �s �ld��c��pptr��address�city� pptr��address�state�

��pptr��address�zip		�

return TRUE�

�

Figure ����� Code for readllbl�	



����� A SMALL DATA BASE EXAMPLE ���

�� File� lbldb�c � continued ��

�� Prints n labels stored in lbllist��� ��

void print�label lbllist��� int n	


 int i�

printf���nLabel Data��n�	�

for �i � 
� i � n� i��	

printlabel��lbllist�i�	�

�

�� This routine prints the label data� ��

void printlabel�struct label � pptr	




printf���n�s �s �s�n�s�n�s �s �ld�n��

pptr��name�first�

pptr��name�middle�

pptr��name�last�

pptr��address�street�

pptr��address�city�

pptr��address�state�

pptr��address�zip	�

�

Figure ����� Code for print�	 and printlabel�	



��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

�� File� lbldb�c � continued ��

�� Loads a maximum of lim labels from a file into lbllist���

Returns the number n of labels actually read�

��

int load�label lbllist��� int lim	


 char s�����

FILE �infp�

int n�

printf��Input File� �	�

gets�s	�

infp � fopen�s� �r�	�

if ��infp	

return 
�

n � fread�lbllist� sizeof�label	� lim� infp	�

fclose�infp	�

return n�

�

�� Saves n labels from lbllist�� to a file� ��

int save�label lbllist��� int n	


 char s�����

FILE �outfp�

printf��Output File� �	�

gets�s	�

outfp � fopen�s� �w�	�

if ��outfp	

return 
�

fwrite�lbllist� sizeof�label	� n� outfp	�

fclose�outfp	�

return n�

�

Figure ������ Code for load�	 and save



����� OPERATING SYSTEM INTERFACE ��


��� Kailani Ave

Kailua Hi "#���

Command� E	dit� L	oad� P	rint� S	ave� Q	uit

e
A	dd� D	elete� C	hange

a

Enter Last Name� RETURN to quit� Springer
Enter First and Middle Name� John Karl
Enter Street Address� Coconut Ave
Enter City State Zip� Honolulu Hi ��	��
Enter Last Name� RETURN to quit�

Command� E	dit� L	oad� P	rint� S	ave� Q	uit

s
Output File� lbl�db

Command� E	dit� L	oad� P	rint� S	ave� Q	uit

q

The session starts with the menu menu� We select the menu item Load to load a previously
saved list of labels in the �le� lbl�db� After this �le is loaded� we select Print to print the labels�
Next� we select Edit and Add to add one new label� Then we select Save to save the revised list to
the �le lbl�db� Finally� we select Quit to exit the program�

���� Operating System Interface

As stated at the beginning of the chapter� all of our programs so far have had minimal interaction
with the environment in which they are running� i�e� the operating system� and in particular the
shell� One area where we could make use of operating system support is in specifying �les to be
used in execution of the program� In our previous examples we have either redirected the input
or output when running the program �and read or written to the standard input or output in the
program code�� or prompted the user explicitly for the �le names once the program has begun
executing� However� this is not the only �nor most convenient� way to specify �les to a program�
It should also be possible to pass arguments to a program when it is executed� An executable
program is invoked by a command to the host operating system consisting of the name of the
program� However� the entire command may also include any arguments that are to be passed to
the program� For example� the C compiler does not prompt us for the �le names to be compiled�
instead we simply type the command�

cc filename�c

The entire command is called the command line and may include additional information to the
program such as options and �le names� The C compiler �and most� if not all� other commands�
is also simply a C program�



��� CHAPTER ��� FILES AND THE OPERATING SYSTEM

There must be a way this additional information can be passed to an executing program� There
is� The command line arguments are passed to the formal parameters of the function main�	� We
have always de�ned the function main�	 with no formal parameters� however� in reality it does
have such parameters� The formal parameters of main�	 are� an integer� argc� and an array of
pointers� argv��� The full prototype for main�	 is�

int main�int argc� char � argv��	�

Each word typed by the user on the command line is considered an argument �including the
program name�� The parameter argc receives the integer count of the number of arguments on
the command line� and each word of the line is stored in a string pointed to by the elements
of argv��� So� if the command line consists of just the program name� argc is � and argv�
�

points to a string containing the program name� If there are other arguments on the command
line� argv��� points to a string containing the �rst argument after the program name� argv���
to the next following one� and so forth� In addition� main�	 has an integer return value passing
information back to the environment speci�ed by the return or exit statement terminating
main�	� Recall� we have always used exit in the form�

exit�
	�

A common convention in Unix is that a program terminates with a zero return value if it terminates
normally� and with non�zero if it terminates abnormally�

Figure ����� shows a program that prints the values of argc and each of the strings pointed
to by the array argv��� The program then uses the �rst argument passed on the command line
as a �source� �le name� and the second as a �destination� �le name and copies the source �le to
the destination� The program returns zero to the environment to indicate normal termination�

Sample Session with a command line�

filecopy filecopy�c xyz

���Command Line Arguments � File Copy���

Number of arguments� argc � �

The arguments are the following strings

C�nBKnBOOKnCH"nFILECOPY�EXE
filecopy�c

xyz

The number of arguments in the command line is �� and each of the strings pointed to by
the array argv�� is then printed� The �rst argument is the complete path for the program name
as interpreted by the host environment� The program then opens the �les and copies the �le
filecopy�c to xyz�

In addition to receiving information from the operating system� a program can also call on the
shell to execute commands available in the host environment� This is very simple to do with C
using the library function system�	� Its prototype is�

int system�const char �cmmdstr	�



����� OPERATING SYSTEM INTERFACE ���

�� File� filecopy�c

This program shows the use of command line arguments� argc is the number

of words in the command line� The first word is the program name� the next

is the first argument� and so on� The program copies one file to another�

The command line to copy file� to file� is�

filecopy file� file�

��

�include �stdio�h�

main�int argc� char �argv��	


 int i� c�

FILE �fin� �fout�

printf�����Command Line Arguments � File Copy����n�n�	�

printf��Number of arguments� argc � �d�n�� argc	�

printf��The arguments are the following strings�n�	�

�� argv�
� is the program name� ��

�� argv��� is the first argument after the program name� etc� ��

for �i � 
� i � argc� i��	

printf���s�n�� argv�i�	�

fin � fopen�argv���� �r�	�

fout � fopen�argv���� �w�	�

if� �fin $$ �fout 	 exit��	�

while ��c � fgetc�fin		 �� EOF	

fputc�c� fout	�

exit�
	�

�

Figure ������ File Copy Program Using Command Line Arguments



�	� CHAPTER ��� FILES AND THE OPERATING SYSTEM

The function executes the command given by the string cmmdstr� it returns � if successful� and
returns �� upon failure� Examples include�

system��date�	�

system��time�	�

system��clear�	�

The �rst prints the current date� the second prints the current time maintained by the system�
and the third clears the screen�

���� Summary

In this chapter we have looked at alternate �le I�O functions� fread�	 and fwrite�	 which
perform block I�O� transferring blocks of data directly between memory and data �les� This form
of I�O is more e�cient than formatted I�O which converts information between its internal binary
representation and the corresponding ASCII representation of the information as strings for the
actual I�O� It should be remembered that �les used for block I�O have information stored in
binary and are therefore NOT readable by other programs which do not know the format of the
data�

We also saw library routines for controlling the �current position� in the �le stream for I�O�
namely ftell�	 and fseek�	� These operations can be performed on either text or binary �les�

Finally� we discussed the interactions a program can perform with its environment � the
operating system or shell� These include receiving information from the shell in the form of
command line arguments which are passed to main�	 as arguments� and the system�	 function
which can call on the environment to perform some command�



����� PROBLEMS �	�

���� Problems

�� Write a program that copies one �le to another with �le names supplied by the command
line�

	� Modify the program in Problem � in Chapter �	 to add load and store operations to the
student data base program using block I�O�

�� Modify the program in Problem � in Chapter �	 to add load and store operations to the
club data base program using block I�O�

�� Modify the program in Problem �� in Chapter �	 to add load and store operations to the
library data base program using block I�O�

�� Write a program that serves as a dictionary and thesaurus� A dictionary keeps a meaning
for each word� A meaning may be one or more lines of text� A thesaurus keeps a set of
synonyms for each word� Assume that the maximum number of entries in the dictionary
is ���� there are no more than two lines for a meaning� and there are no more than three
synonyms for each word� Allow the user to ask for synonyms� meanings� spell check a text
�le with repacement of words or add word entries to dictionary� Use �les to load and save
the dictionary�



�		 CHAPTER ��� FILES AND THE OPERATING SYSTEM



Chapter ��

Storage Class and Scope

In previous chapters we have discussed the declaration of variables within functions and described
how memory space is allocated by the compiler for these variables as a program executes� How
�and where� this memory is allocated� as well as how long it is allocated is determined by what
is called the storage class for the variable� In addition we have discussed where within the code
the variable name is �visible�� i�e� where it can be accessed by name� This is called the scope of
the variable� The variables we have seen so far have all been of storage class automatic� i�e� they
are allocated when the function is called� and deallocated when it returns� with local scope� i�e�
visible only within the body of the function� The C language provides several other storage classes
together with their scope for controlling memory allocation� In this chapter we will discuss in more
detail the concepts of memory allocation and present the other storage classes available in C� viz�
automatic� external� register� and static� We will also see that functions� as well as variables� have
storage class and scope� We next discuss dynamic allocation of memory� where a program can
determine how much additional memory it needs as it executes� Finally� we introduce function
pointers� i�e� pointer variables which can hold pointers to functions rather than data� We will see
how these pointers are created� stored� passed as parameters� and accessed�

���� Storage Classes

Every C variable has a storage class and a scope� The storage class determines the part of memory
where storage is allocated for an object and how long the storage allocation continues to exist� It
also determines the scope which speci�es the part of the program over which a variable name is
visible� i�e� the variable is accessible by name� The are four storage classes in C are automatic�
register� external� and static�

������ Automatic Variables

We have already discussed automatic variables� They are declared at the start of a block� Memory
is allocated automatically upon entry to a block and freed automatically upon exit from the block�
The scope of automatic variables is local to the block in which they are declared� including any
blocks nested within that block� For these reasons� they are also called local variables� No block
outside the de�ning block may have direct access to automatic variables� i�e� by name� Of course�
they may be accessed indirectly by other blocks and�or functions using pointers�

�	�



�	� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� reg�c ��

main�	


 register float a � 
�

auto int bb � ��

auto char cc � !w!�

�� rest of the program ��

�

Figure ����� Code fragment illustrating register and auto declarations
o

Automatic variables may be speci�ed upon declaration to be of storage class auto� However�
it is not required� by default� storage class within a block is auto� Automatic variables declared
with initializers are initialized each time the block in which they are declared is entered�

������ Register Variables

Register variables are a special case of automatic variables� Automatic variables are allocated
storage in the memory of the computer� however� for most computers� accessing data in memory
is considerably slower than processing in the CPU� These computers often have small amounts of
storage within the CPU itself where data can be stored and accessed quickly� These storage cells
are called registers�

Normally� the compiler determines what data is to be stored in the registers of the CPU at what
times� However� the C language provides the storage class register so that the programmer can
�suggest� to the compiler that particular automatic variables should be allocated to CPU registers�
if possible� Thus� register variables provide a certain control over e�ciency of program execution�
Variables which are used repeatedly or whose access times are critical� may be declared to be of
storage class register�

Register variables behave in every other way just like automatic variables� They are allocated
storage upon entry to a block� and the storage is freed when the block is exited� The scope of
register variables is local to the block in which they are declared� Rules for initializations for
register variables are the same as for automatic variables�

Figure ���� shows a code fragment for a main�	 function that uses register as well as auto
storage class� The class speci�er simply precedes the type speci�er in the declaration� Here�
the variable� a� should be allocated to a CPU register by the compiler� while bb and cc will be
allocated storage in memory� Note� the use of the auto class speci�er is optional�

As stated above� the register class designation is merely a suggestion to the compiler� Not
all implementations will allocate storage in registers for these variables� depending on the number
of registers available for the particular computer� or the use of these registers by the compiler�
They may be treated just like automatic variables and provided storage in memory�

Finally� even the availability of register storage does not guarantee faster execution of the
program� For example� if too many register variables are declared� or there are not enough registers
available to store all of them� values in some registers would have to be moved to temporary storage


