
����� STORAGE CLASSES ���

in memory in order to clear those registers for other variables� Thus� much time may be wasted
in moving data back and forth between registers and memory locations� In addition� the use of
registers for variable storage may interfere with other uses of registers by the compiler� such as
storage of temporary values in expression evaluation� In the end� use of register variables could
actually result in slower execution� Register variables should only be used if you have a detailed
knowledge of the architecture and compiler for the computer you are using� It is best to check the
appropriate manuals if you should need to use register variables�

������ External Variables

All variables we have seen so far have had limited scope �the block in which they are declared�
and limited lifetimes �as for automatic variables�� However� in some applications it may be useful
to have data which is accessible from within any block and�or which remains in existence for the
entire execution of the program� Such variables are called global variables� and the C language
provides storage classes which can meet these requirements� namely� the external and static classes�

External variables may be declared outside any function block in a source code 	le the same
way any other variable is declared� by specifying its type and name� No storage class speci	er is
used
 the position of the declaration within the 	le indicates external storage class� Memory
for such variables is allocated when the program begins execution� and remains allocated until the
program terminates� Fo rmost C implementations� every byte of memory allocated for an external
variable is initialized to zero�

The scope of external variables is global� i�e� the entire source code in the 	le following the
declarations� All functions following the declaration may access the external variable by using its
name� However� if a local variable having the same name is declared within a function� references
to the name access the local variable cell� Figure ���� shows an example of external variables and
their scope� The comments in the code indicate which variable is accessed in each reference to the
name� The situation is shown graphically in Figure ���
� Executing the program produces the
following sample session�

���Scope of External Variables���

a� � �

a� � a� b� � ��

a� � �

a� � ��� b� � ��	�

�

a� � ��

External variables may be initialized in declarations just as automatic variables� however� the
initializers must be constant expressions� The initialization is done only once at compile time� i�e�
when memory is allocated for the variables variables�

In general� it is a good programming practice to avoid use of external variables as they destroy
the concept of a function as a �black box�� The black box concept is essential to the development
of a modular program with independent modules� With an external variable� any function in the
program can access and alter the variable� thus making debugging more di�cult as well� This is
not to say that external variables should never be used� There may be occasions when the use of
an external variable signi	cantly simpli	es the implementation of an algorithm� Su�ce it to say
that external variables should be used rarely and with caution�

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� glb	c

This program clarifies the scope of external variables	

��

include �stdio	h�

void next�void��

void next��void��

int a� � �� �� external variable� global scope ��

�� scope� main��� next��� next��� ��

main��

�

printf�����Scope of External Variables����n�n���

a� � �� �� external var ��

printf��a� � �d�n�� a��� �� a� � � ��

next���

printf��a� � �d�n�� a��� �� a� � � ��

next����

printf��a� � �d�n�� a��� �� a� � �� ��

�

int b� �
� �� external variable ��

�� scope� global to next� next� ��

�� main�� cannot access b� ��

void next�void�

� char a�� �� auto var� scope local to next�� ��

�� next�� cannot access external a� ��

a� � �a�� �� local auto var ��

b� � ��� �� external var ��

printf��a� � �c� b� � �d�n�� a�� b��� �� a� � a� b� � �� ��

�

void next��void�

� float b�� �� auto var� scope local to next��� ��

�� next��� cannot access external b� ��

b� � ��	�� �� auto var ��

a� � ��� �� external var ��

printf��a� � �d� b� � �f�n�� a�� b��� �� a� � �� ��

�� b� � ��	� ��

�

Figure ����� Example of external variable scope

����� STORAGE CLASSES ���

main�� next�� next���

a� b�

a� b�

Figure ���
� Storage allocation for global variables

������ Variable De�nition vs Declaration

Up until now� we have been using the term declaration rather loosely when referring to variables�
In this section� we will �tighten� the de	nition of this term� So far when we have �declared� a
variable� we have meant that we have told the compiler about the variable� i�e� its type and its
name� as well as allocated a memory cell for the variable �either locally or globally�� This latter
action of the compiler� allocation of storage� is more properly called the de�nition of the variable�
The stricter de	nition of declaration is simply to describe information �about� the variable�

So far� we have used declarations to declare variable names and types as well as to de�ne

memory for them� Most of the time these two actions occur at the same time� that is� most
declarations are de	nitions� however� this may not always be the case�

We have already seen an analogous case illustrating the di�erence between declaring and de�n�

ing with functions� The prototype statement for a function declares it� i�e� tells the compiler
�about� the function
 its name� return type� and number and type of its parameters� A similar
statement� the function header� followed by the body of the function� de�nes the function
 giving
the details of the steps to perform the function operation�

For automatic and register variables� there is no di�erence between de	nition and declaration�
The process of declaring an automatic or a register variable de	nes the variable name and allocates
appropriate memory� However� for external variables� these two operations may occur indepen�
dently� This is important because memory for a variable must be allocated only once� to ensure
that access to the variable always refers to the same cell� Thus� all variables must be de	ned once
and only once� If an external variable is to be used in a 	le other than the one in which it is de�ned�
a mechanism is needed to �connect� such a use with the uniquely de	ned external variable cell
allocated for it� This process of connecting the references of the same external variable in di�erent
	les� is called resolving the references�

As we saw in the previous section� external variables may be de	ned and declared with a
declaration statement outside any function� with no storage class speci	er� Such a declaration
allocates memory for the variable� A declaration statement may also be used to simply declare a
variable name with the extern storage class speci	er at the beginning of the declaration� Such
a declaration speci	es that the variable is de�ned elsewhere� i�e� memory for this variable is
allocated in another 	le� Thus� access to an external variable in a 	le other than the one in which

��� CHAPTER ��� STORAGE CLASS AND SCOPE

it is de�ned is possible if it is declared with the keyword extern� no new memory is allocated� Such
a declaration tells the compiler that the variable is de	ned elsewhere� and the code is compiled
with the external variable left unresolved� The reference to the external variable is resolved during
the linking process�

Here are some examples of declarations of external variables that are not de�nitions�

extern char stack��
��

extern int stkptr�

These declarations tell the compiler that the variables stack�� and stkptr are de	ned else�
where� usually in some other 	le� If the keyword extern were omitted� the variables would be
considered to be new ones and memory would be allocated for them� Remember� access to the
same external variable de	ned in another 	le is possible only if the keyword extern is used in the
declaration� Figure ���� shows an example of a source program that references the same external
variable in di�erent 	les� The 	les are assumed to be compiled separately and linked together to
create a load module� A sample run is shown below�

���Declaration vs Definition���

a� � �

a� � ��

������ An Example	 Lexical Scanner

To illustrate the use of external storage class variables� let us now consider an example in which
a good program design is facilitated by the use of an external variable� The task is to 	nd the
next token in an input stream of characters� A token is a useful chunk of characters in the input
stream� e�g� an operator� an identi	er� an integer� a �oating point number� etc� Tokens are also
called symbols� A function that 	nds the next token in an input stream and identi	es its type is
called a lexical scanner� For our example� we will write a simple lexical scanner� get token��� to
	nd the next token and its type until an end of 	le is reached�

We will assume that the only valid tokens in the input stream to be identi	ed by the program
are either integers or operators� Further� we assume that integers can have no more than 	ve digit
characters and the operator can have no more than a single character� The operators allowed are ��
�� �� �� If an integer type token exceeds the size limit� an oversize type is to be identi	ed� White
space characters between tokens are to be ignored� Any other character is an invalid character
which is to be identi	ed as an illegal type of token� Finally� the end of 	le is to be signaled by an
end of text type of token�

We assume that get token�� determines the next token in the input stream and its type�
We use a 	le symdef	h for all the de	nes� The function prototype for get token�� is included in
symtok	h� The function takes two arguments� a string for the token� and the maximum size of the
token� The function returns the type of the token� a symbolic constant with an integer value� The
	les symdef	h and symtok	h are shown in Figure ����� The logic for the driver is straightforward
and the implementation is in the 	le called symbol	c shown in Figure ����� A loop is executed as
long as there is a new token� and for each iteration� a token and its type are printed� When the
end of 	le is reached� the token type returned by get token�� is EOT� the loop is terminated and

����� STORAGE CLASSES ���

�� File� ext	c

This example shows reference to an external variable

in more than one file	 The program is organized in

three files	 The external variable a� is defined in ext	c�

and it is declared as extern in FILE�	C	

��

include �stdio	h�

void next�void��

void next��void��

int a� � �� �� definition of external a� ��

main��

�

printf�����Declaration vs Definition����n�n���

a� � ��

printf��a� � �d�n��a��� �� a� � � ��

next��� �� No change in external a� ��

next���� �� external a� changed to �� ��

printf��a� � �d�n�� a��� �� a� � �� ��

�

�� File� FILE�	C ��

int b� �
� �� definition of external b� ��

void next�void�

� char a�� �� auto a� defined ��

a� � �a�� �� only local a� is visible ��

b� � ��� �� external b� is accessed ��

�

�� File� FILE�	C ��

extern int a�� �� declaration of external a� ��

void next��void�

� float b�� �� auto b� defined ��

b� � ��	�� �� only local b� is visible ��

a� � ��� �� external a� is accessed ��

�

Figure ����� Example of the use of extern declarations

�
� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� symdef	h ��

�� Token Types ��

define INT
 �� integer ��

define OPR � �� operator ��

define ILG � �� illegal ��

define EOT � �� end of text ��

define OVR � �� oversize ��

define LIM � �� token size limit ��

�� File� symtok	h ��

int get�token�char � token� int lim��

Figure ����� Header 	les for Lexical Scanner

�� File� symbol	c

Other Source Files� symtok	c� symio	c

Header Files� symdef	h� symtok	h� symio	h

This program reads an input stream and determines the tokens in the

input stream	 The primary token types are integer and operator	 If

the integer type token exceeds a specified limit� the token is of

type oversize	 Leading white space is skipped over	 All other

characters are considered to be illegal type tokens	 Finally� EOF is

returned as a special token type to terminate the program	

��

include �stdio	h�

include �symdef	h�

include �symtok	h�

main��

� int type�

char symbol�LIM � ���

printf�����Tokens and Types����n�n���

printf��Types� integers�
�� operators���� illegal�����n���

printf�� end of text���� and oversize integers����n���

printf��Type input text� EOF to quit�n���

while ��type � get�token�symbol� LIM�� � EOT�

printf��Token � �!s Type � �!d�n�� symbol� type��

�

Figure ����� Driver for Lexical Scanner

����� STORAGE CLASSES �
�

the program ends� The size limit on a token is de	ned by LIM� The string� symbol� has a size of
LIM plus one to accommodate the terminating NULL character�

Here is our logic for get token��� The function scans the input stream� skipping over any
leading white space� The 	rst non�white character determines the type of token to build� For
example� if the 	rst non�white character is a digit character� the function builds a token of type
INT� The integer type token is built using a loop� As long as the input character is a digit character
and the token size limit is not exceeded� the input character is appended to the token string� If the
token size limit is exceeded� the type is identi	ed as OVR and the digit is discarded� The process of
discarding digits continues until a non�digit character is read� The token string is terminated with
a NULL� and the token type is returned� Otherwise� the building of an integer token is terminated
when a non�digit character is read� The non�digit character read must somehow be returned to the
input stream� so that it is available in building the next token� For example� if the next character is
an operator� �� that character must be used in building the next token� If this non�digit character
were discarded� it would be lost� Thus� the extra character that was read must be placed back
into the input stream to be available once again for building the next token�

We will assume that the desired I�O actions are performed using an �e�ective input stream��
We will write two functions� getchr�� and ungetchr�c� for I�O with the e�ective stream� The
function getchr�� correctly reads a character from the e�ective input stream� and ungetchr�c�

puts a character� c� back into the e�ective input stream� Assuming these functions� the algorithm
for building an integer type token is simple�

if �isdigit�c�� � �� if c is a digit� ��

type � INT� �� type is integer ��

while �isdigit�c�� � �� repeat as long as c is a digit� ��

if �i � lim� �� if the size limit is not exceeded� ��

s�i��� � c� �� append the digit char� ��

else type � OVR� �� otherwise� we have an oversize token ��

c � getchr��� �� get the next input char ��

�

s�i� � NULL� �� append the NULL ��

ungetchr�c�� �� put back the extra char read ��

�

The prototypes for the functions getchr�� and ungetchr�� are�

�� File� symio	h ��

int getchr�void��

void ungetchr�int c��

Assuming these functions are available in the source 	le� symio	c� we can implement the
function get token�� in Figure ����� Finally� we are ready to write the functions getchr�� and
ungetchr�� in a separate 	le� We will use a bu�er to simulate the e�ective input stream so that
when a character is to be returned to the input stream� it is placed in the bu�er� When a character
is to be read� the bu�er is examined 	rst� If there is a character in the bu�er� that character is
taken as the next input character� If the bu�er is empty� a new character is read from standard
input using getchar��� Thus� the one character bu�er serves as an adjunct to the input stream�
getchr�� gets the next character either from the bu�er or from the standard input� depending on

�
� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� symtok	c ��

include �stdio	h�

include �symdef	h�

include �symio	h�

include �ctype	h�

define TRUE �

define FALSE

�� Gets the next token s with a size limit of lim�

and returns the token type	

��

int get�token�char s��� int lim�

� int i� c� type�

i �
� �� initialize string index i to zero ��

c � getchr��� �� get the first character ��

while �isspace�c�� �� skip over white space ��

c � getchr���

if �isdigit�c�� � �� if c is a digit ��

type � INT� �� type is INT ��

while �isdigit�c�� � �� Build an INT token ��

if �i � lim� �� if size limit not exceeded� ��

s�i��� � c� �� add the next char to token� ��

else type � OVR� �� else� type is OVR ��

c � getchr��� �� get next char ��

�

ungetchr�c�� �� and put back the extra char read	 ��

�

else if �is�op�c�� � �� if c is an operator ��

s�i��� � c� �� build an operator token ��

type � OPR�

�

else if �c �� EOF� �� if end of file ��

type � EOT� �� type is EOT ��

else �

type � ILG� �� otherwise� we have an illegal char ��

s�i��� � c� �� a single char string is built ��

�

s�i� � NULL� �� terminate the token string ��

return�type�� �� return token type ��

�

�� Checks to see if c is an operator ��

int is�op�int c�

�

if �c �� ��� "" c �� ��� "" c �� ��� "" c �� ����

return�TRUE��

return�FALSE��

�

Fi �� � C d f t t k ��

����� STORAGE CLASSES �

�� File� symio	c ��

include �stdio	h�

include �symdef	h� �� needed for stdio	h ��

int c � NULL� �� buffer c initialized to zero ��

�� initialization unnecessary ��

�� Gets the next character either from the buffer if there is

one� otherwise gets a char from stdin	

��

int getchr�void�

� int ch�

if �c� � �� if c is not a null char� ��

ch � c� �� save it temporarily� and ��

c � NULL� �� reset c to NULL ��

return ch� �� return the saved value ��

�

else

return getchar��� �� else� return a char from stdin ��

�

�� Puts a char into the buffer for later use ��

void ungetchr�int cc�

�

c � cc� �� save the char cc in the buffer ��

�

Figure ����� Code for implementing the �e�ective input stream�

the state of the bu�er� while ungetchr�� saves a character into the bu�er for later use� E�ectively�
getchr�� gets a character from the input stream� and ungetchr�� returns a character to the input
stream� Both getchr�� and ungetchr�� must access the bu�er� However� get token�� should
not be concerned with the details of accessing the input stream� Such details should be hidden

from the rest of the program� Such information hiding is an important component of modular
program design� The above case obviously calls for it� thus� get token�� should not be involved
with the details of maintaining the bu�er�

To achieve this information hiding� we put getchr�� and ungetchr�� in a separate 	le together
with the external variable used as a one character bu�er which is accessible to both getchr�� and
ungetchr��� Figure ���� shows the implementation� The external variable for the character bu�er
used in the 	le symio	c makes it unnecessary for other functions to pass a bu�er variable as an
argument in function calls to getchr�� and ungetchr��� Separation of these functions and the
external variable they use into a distinct 	le makes for a modular program design� No other
function needs access to the external variable de	ned in the 	le symio	c�

A standard library function� ungetch��� is available which returns its argument to the keyboard

�
� CHAPTER ��� STORAGE CLASS AND SCOPE

bu�er� We could have also used ungetch�� and getchar�� to handle the above tasks of getting
and ungetting characters from the keyboard input stream�

A sample run of the program symbol	c is shown below�

���Tokens and Types���

Types� integers�
�� operators���� illegal����

end of text���� and oversize integers���

Type input text� EOF to quit

��� � �����	
 ��

Token � ��� Type �

Token � � Type � �

Token � ����� Type � �

Token � � Type � �

Token � �� Type �

��
����

Token � �� Type �

Token � � Type � �

Token � �� Type �

Token � � Type � �

Token � � Type �

x � �

Token � x Type � �

Token � � Type � �

Token � ! Type �

Token � � Type � �

�D

In the 	rst input line� we use blanks to separate the tokens� We also have an oversize token
in this case� In the second input line� no blanks are used to separate the tokens� Finally� the last
line includes many illegal characters� In each case� the longest possible token is built�

While we caution against the use of external variables as a rule� there are occasions when the
use of external variables results in better programs� The deciding factor should always be better
program design that provides modularity and �exibility� and that facilitates debugging�

�����
 Static Variables

As we have seen� external variables have global scope across the entire program �provided extern

declarations are used is 	les other than where the variable is de	ned�� and a lifetime over the the
entire program run� The storage class� static� similarly provides a lifetime over the entire program�
however� it provides a way to limit the scope of such variables� Static storage class is declared
with the keyword static as the class speci	er when the variable is de	ned� These variables are
automatically initialized to zero upon memory allocation just as external variables are� Static
storage class can be speci	ed for automatic as well as external variables�

Static automatic variables continue to exist even after the block in which they are de	ned
terminates� Thus� the value of a static variable in a function is retained between repeated function

����� STORAGE CLASSES �
�

calls to the same function� The scope of static automatic variables is identical to that of automatic
variables� i�e� it is local to the block in which it is de	ned� however� the storage allocated becomes
permanent for the duration of the program� Static variables may be initialized in their declarations�
however� the initializers must be constant expressions� and initialization is done only once at
compile time when memory is allocated for the static variable�

Figure ���� shows an example which sums integers� using static variables� Function sumit��

reads a new integer and keeps a cumulative sum of the previous value of the sum and the new
integer read in� The cumulative value of sum is kept in the static variable� sum� The driver� main��
calls sumit�� 	ve times to sum 	ve integers�

Sample Session�

���Static Variables���

Please enter � numbers to be summed

Enter a number� ��

The current total is ��

Enter a number� ��

The current total is ��

Enter a number� ��

The current total is #�

Enter a number� ��

The current total is ���

Enter a number� �	

The current total is ��

Program completed

While the static variable� sum� would be automatically initialized to zero� it is better to do so
explicitly� In any case� the initialization is performed only once at the time of memory allocation
by the compiler� The variable sum retains its value during program execution� Each time the
function sumit�� is called� sum is incremented by the next integer read�

Static storage class designation can also be applied to external variables� The only di�erence
is that static external variables can be accessed as external variables only in the 	le in which they
are de	ned� No other source 	le can access static external variables that are de	ned in another
	le�

�� File� xxx	c ��

static int count�

static char name�!��

main��

�

			 �� program body ��

�

Only the code in the 	le xxx	c can access the external variables count and name� Other 	les
cannot access them� even with extern declarations�

We have seen that external variables should be used with care� and access to them should
not be available indiscriminately� De	ning external variables to be static provides an additional

�
� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� static	c ��

�� Program uses a function to sum integers	 The function

uses a static variable to store the cumulative sum	

��

include �stdio	h�

define MAX �

void sumit�void��

main��

� int count�

printf�����Static Variables����n�n���

printf��Please enter � numbers to be summed�n���

for �count �
� count � MAX� count���

sumit���

printf��Program completed�n���

�

�� Function reads an integer� and keeps cumulative sum of

integer read and the previous value of a static variable sum	

��

void sumit�void�

� static int sum �
� �� sum is initialized to zero ��

�� at compile time	 ��

int num�

printf��Enter a number� ���

scanf���d��$num��

sum �� num�

printf��The current total is �d�n��sum��

�

Figure ����� An example of static variables

����� STORAGE CLASSES �
�

�� File� symio�	c ��

include �stdio	h�

include �symdef	h�

static int c � NULL� �� static external c ��

�� Gets the next character either from the buffer if there is

one� otherwise gets a char from stdin	

��

int getchr��

� int ch�

if �c� � �� if c is not a null char� ��

ch � c� �� save it temporarily� and ��

c � NULL� �� reset c to zero ��

return�ch�� �� Return the saved value ��

�

else

return�getchar���� �� else� return a char from stdin ��

�

�� Puts a char into the buffer for later use ��

void ungetchr�int cc�

�

c � cc� �� save the char cc in the buffer ��

�

Figure ������ Revised 	le symio	c using static variable

control on which functions can access them� For example� in the symbol	c example in the last
section� we created a 	le symio	c which contained an external variable� This external variable
should be accessible only to the functions in that 	le� However� there is no way to guarantee that
some other 	le may not access it by declaring it as extern� We can ensure that this will not
happen by declaring the variable as static as shown in Figure ������ The static variable c would
not be accessible to functions de	ned in any other 	le� thus preventing an unplanned use of it as
an external variable by the code in other 	les�

������ Storage Class for Functions

Like variables� functions in C have a storage class and scope� All functions in C are external by
default and are accessible to all source 	les� However� functions may be declared to be of static
class� in which case they are accessible only to functions in the 	le in which they are de	ned� not
to functions in other 	les� This is another way of hiding information� Information hiding makes
these static function names invisible to all other 	les� thus� these names may be used to de	ne

�
� CHAPTER ��� STORAGE CLASS AND SCOPE

other functions elsewhere�
Here is an example that uses static variables as well as a static function� The program assigns

bins to di�erent part numbers� The array� index� represents the bin number where the part
number is stored �it is easy to generalize the program to structures�� The program is organized in
two 	les� bins	c and binutil	c� The 	rst 	le� bins	c� contains the driver which reads in the part
numbers� and calls a function� getbin��� to assign a bin number to each part number� Finally�
the driver prints the bins and the corresponding part numbers using the function printbin���
Here are the prototypes�

�� File� binutil	h ��

void getbin�int bin��� int part� int lim��

void printbin�int bin��� int lim��

The function getbin�� needs three arguments� an array of bins� a part number� and the array
size limit� The bin number is just the array index� so getbin�� assigns one of the bins in the array
to the part number� and stores the part number in the array at the corresponding bin number
index� The function printbin�� needs the array of bins and its size as arguments� It prints
out each bin number index and the corresponding part number stored at that array index� The
driver is shown in Figure ������ The program loop reads a part number and if it is not zero� it
calls getbin�� to assign a bin number to the part number� If the part number is zero� the loop
terminates� and printbin�� prints bin numbers and corresponding part numbers�

Let us now implement getbin��� Unused array elements of bin should be initialized to some
invalid part number� say ��� so that printbin�� would be able to distinguish the valid elements
of the array� The 	rst time getbin�� is called� it calls initbin�� which initializes bin to ��� In
addition� getbin�� should assign the next available index to the part number� The functions are
shown in Figure ������ The function getbin�� uses a static variable� first� initialized to TRUE�
to determine if the function is being called for the 	rst time� When the function is called the 	rst
time� it initializes the array� bin and changes 	rst to FALSE� A second static variable� bin number

is used to remember the next available bin number between function calls� As a bin is assigned to
a part number� bin number is incremented� Since it is a static variable� its latest value is available
each time the function is called� The function printbin�� merely prints each array index and
the part number stored at that index� Initialization of the array bin is done by a static function
initbin��� This function is not required anywhere else� and so a static class is declared for it�
thus the details of array initialization are hidden from all other functions� A sample run of the
program is shown below�

���Bin Assignments to Parts���

Type part numbers� enter zero to quit

Enter part number� ����

Enter part number� ���

Enter part number� ���

Enter part number� ����

Enter part number� �

Bin number
 has part number ����

Bin number � has part number ���

����� STORAGE CLASSES �
�

�� File� bins	c

Other Source Files� binutil	c

Header Files� binutil	h

This program assigns a unique bin number to each part number	 The

user types the part numbers and the program assigns bin numbers

to the parts in sequence	 A zero part number terminates the program	

It is also assumed that the user types only new part numbers	 No

check is made to see if a part number is already assigned a bin	

��

include �stdio	h�

include �binutil	h� �� prototypes for getbin��� printbin�� ��

define MAX �

main��

� int bin�MAX�� part�no�

printf�����Bin Assignments to Parts����n�n���

printf��Type part numbers� enter zero to quit�n���

do �

printf��Enter part number� ���

scanf���d��$part�no��

if �part�no�

getbin�bin� part�no� MAX��

� while �part�no��

printbin�bin� MAX��

�

Figure ������ Driver for bins program

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� binutil	c ��

include �stdio	h�

include �binutil	h� �� prototypes for getbin��� printbin�� ��

define TRUE �

define FALSE

static void initbin�int bin��� int lim��

�� Initializes an array bin of size lim	 The function

is declared static since no other file needs it	

��

static void initbin�int bin��� int lim�

� int i�

for �i �
� i � lim� i���

bin�i� �
�

�

�� Assigns a bin element to a part number	 First time it

is called� it initializes the array bin��	

��

void getbin�int bin��� int part� int lim�

� static int first � TRUE�

static bin�number �
�

if �first� �

initbin�bin� lim��

first � FALSE�

�

if �bin�number � lim�

bin�bin�number��� � part�

else

printf��Error � out of Part Bins�n���

�

�� Prints out bin numbers and part numbers	 ��

void printbin�int bin��� int lim�

� int i�

for �i �
� i � lim $$ bin�i�� i���

printf��Bin number �d has part number �d�n��i�bin�i���

�

Figure ������ Code for bin utilities

����� STORAGE CLASSES ���

main� �

Top

�a�

main� � main� �

Top

�b� �c�

parameters

func�� �

Top

Figure ����
� Organization of the Stack

Bin number � has part number ���

Bin number � has part number ���

������ Stack vs Heap Allocation

We conclude our discussion of storage class and scope by brei�y describing how the memory of
the computer is organized for a running program� When a program is loaded into memory� it is
organized into three areas of memory� called segments� the text segment� stack segment� and heap

segment� The text segment �sometimes also called the code segment� is where the compiled code
of the program itself resides� This is the machine language representation of the program steps to
be carried out� including all functions making up the program� both user de	ned and system�

The remaining two areas of system memory is where storage may be allocated by the compiler
for data storage� The stack is where memory is allocated for automatic variables within functions�
A stack is a First In First Out �FIFO� storage device where new storage is allocated and deallocated
at only one �end�� called the Top of the stack� This can be seen in Figure ����
� When a program
begins executing in the function main��� space is allocated on the stack for all variables declared
within main��� as seen in Figure ����
�a�� If main�� calls a function� func���� additional storage
is allocated for the variables in func��� at the top of the stack as shown in Figure ����
�b�� Notice
that the parameters passed by main�� to func��� are also stored on the stack� If func��� were
to call any additional functions� storage would be allocated at the new Top of stack as seen in the
	gure� When func��� returns� storage for its local variables is deallocated� and the Top of the
stack returns to to position shown in Figure ����
�c�� If main�� were to call another function�
storage would be allocated for that function at the Top shown in the 	gure� As can be seen� the
memory allocated in the stack area is used and reused during program execution� It should be
clear that memory allocated in this area will contain garbage values left over from previous usage�

The heap segment provides more stable storage of data for a program� memory allocated in
the heap remains in existence for the duration of a program� Therefore� global variables �storage

��� CHAPTER ��� STORAGE CLASS AND SCOPE

class external�� and static variables are allocated on the heap� The memory allocated in the heap
area� if initialized to zero at program start� remains zero until the program makes use of it� Thus�
the heap area need not contain garbage�

���� Dynamic Memory Allocation

In the previous section we have described the the storage classes which determined how memory
for variables are allocated by the compiler� When a variable is de	ned in the source program�
the type of the variable determines how much memory the compiler allocates� When the program
executes� the variable consumes this amount of memory regardless of whether the program actually
uses the memory allocated� This is particularly true for arrays� However� in many problems� it is
not clear at the outset how much memory the program will actually need� Up to now� we have
declared arrays to be �large enough� to hold the maximum number of elements we expect our
application to handle� If too much memory is allocated and then not used� there is a waste of
memory� If not enough memory is allocated� the program is not able to handle the input data�

We can make our program more �exible if� during execution� it could allocate additional
memory when needed and free memory when not needed� Allocation of memory during execution
is called dynamic memory allocation� C provides library functions to allocate and free memory
dynamically during program execution� Dynamic memory is allocated on the heap by the system�

It is important to realize that dynamic memory allocation also has limits� If memory is
repeatedly allocated� eventually the system will run out of memory�

���
�� Library Functions for Dynamic Allocation

Two standard library functions are available for dynamic allocation� The function malloc�� allo�
cates memory dynamically� and the function free�� deallocates the memory previously allocated
by malloc��� When allocating memory� malloc�� returns a pointer which is just a byte address�
As such� it does not point to an object of a speci	c type� A pointer type that does not point to a
speci	c data type is said to point to void type� i�e� the pointer is of type void �� In order to use
the memory to access a particular type of object� the void pointer must be cast to an appropriate
pointer type� Here are the descriptions for malloc��� and free���

malloc Prototype� void � malloc�unsigned size�� in� �stdlib	h and alloc	h�

Returns� void pointer to the allocated block of memory if successful� NULL otherwise

Description� Returned pointer must be cast to an appropriate type�

free Prototype� void free�void � ptr�� in� �stdlib	h and alloc	h�

Returns� none

Description� ptr must be a pointer to previously allocated block of memory

If successful� malloc�� returns a pointer to the block of memory allocated� Otherwise� it
returns a NULL pointer� One must always check to see if the pointer returned is NULL� If malloc��
is successful� objects in dynamically allocated memory can be accessed indirectly by dereferencing
the pointer� appropriately cast to the type of pointer required�

����� DYNAMIC MEMORY ALLOCATION ��

The size of the memory to be allocated must be speci	ed� in bytes� as an argument to malloc���
Since the memory required for di�erent objects is implementation dependent� the best way to
specify the size is to use the sizeof operator� Recall that the sizeof operator returns the size�
in bytes� of the operand�

For example� if the program requires memory allocation for an integer� then the size argument
to malloc�� would be sizeof�int�� However� in order for the pointer to access an integer object�
the pointer returned by malloc�� must be cast to an int �� The code takes the following form�

int �ptr�

ptr � �int ��malloc�sizeof�int���

Now� if the pointer returned by malloc�� is not NULL� we can make use of it to access the memory
indirectly� For example�

if �ptr � NULL�

�ptr � ���

Or� simply�

if �ptr�

�ptr � ���

printf��Value stored is �d�n�� �ptr��

Later� memory allocated above may no longer be needed� In which case� it is important to free
the memory� Thus�

free��void �� ptr��

deallocates the previously allocated block of memory pointed to by ptr� Or� more simply� we
could write�

free�ptr��

ptr is 	rst converted to void � in accordance with the function prototype� and then the block of
memory pointed to by ptr is freed�

It is possible to allocate a block of memory for several elements of the same type by giving the
appropriate value as an argument� Suppose� we wish to allocate memory for ��� �oat numbers�
Then� if fptr is a float �� the following statement does the job�

fptr � �float �� malloc��

 � sizeof�float���

Pointer fptr points to the beginning of the memory block allocated� i�e� to the 	rst object of the
block of ��� �oat objects� fptr � � points to the next �oat object� and so on� In other words� we
have a pointer to an array of �oat type� The above approach can be used with data of any type
including structures� The example in Figure ����� allocates memory for a structure� reads data
into it� and then prints the data�

Sample Session�

���Dynamic Memory Allocation���

Student Name� James J� Hillary

Student ID� ���

Student Name� James J	 Hillary ID� ���

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� dynstruct	c

This program uses dynamic allocation of a block of memory

for an element of type stdrec structure	 It then stores data

for one student in the memory block� and prints out the data	

��

include �stdio	h�

include �stdlib	h�

struct stdrec �

char name��
��

int id�

��

main��

� struct stdrec � p�

printf�����Dynamic Memory Allocation����n�n���

p � �struct stdrec ��malloc��sizeof�struct stdrec����

if �p� �

printf��Student Name� ���

gets�p��name��

printf��Student ID� ���

scanf���d��c�� $p��id��

printf��Student Name� ���
s �� p��name��

printf��ID� ��d�n�� p��id��

�

else

printf��Out of Memory�n���

�

Figure ������ Example program using a dynamic structure

����� DYNAMIC MEMORY ALLOCATION ���

���
�
 Dynamic Arrays

Our next example allocates a block of memory dynamically for a number of elements of structure
type� It reads data into the elements and prints the data� Once the returned pointer is cast to an
appropriate type� the allocated memory block may be treated as an array of elements� with the
returned pointer a pointer to the array� The code is shown in Figure ������

Sample Session�

���Dynamic Arrays � Student Records���

Number of students� �

Student Name� James J� Hillary

Student ID� ���

Student Name� John Paul Jones

Student ID� ���

�D

Student Name� James J	 Hillary ID� ���

Student Name� John Paul Jones ID� ���

Dynamic memory allocation can also be performed by the library function calloc��� and the
allocated memory freed as before by free��� All bytes in memory allocated by calloc�� are
cleared to zero� whereas memory allocated by malloc�� is left unchanged� The description for
calloc�� is�

calloc Prototype� void � calloc�unsigned number� unsigned size�� in� �stdlib	h

and alloc	h�

Returns� void pointer to the allocated block of memory if successful� NULL otherwise

Description� Returned pointer must be cast to an appropriate type�

Example�

void � ptr� �� pointer to allocated block of memory ��

unsigned number� �� number of elements to allocate ��

unsigned size� �� size of memory to allocate in bytes ��

ptr � calloc�number� size��

We could have used calloc�� in the previous program example as follows�

p � �struct stdrec ��calloc�n� sizeof�struct stdrec���

We could have then used the fact that the allocated memory is set to zero to signal the end of the
number of elements in the e�ective array�

Normally� an array is de	ned with the range for each dimension speci	ed� and memory is
allocated at compile time� As we saw above� a single dimensional array of a desired size can be
e�ectively de	ned at run time� i�e� during execution� using dynamic allocation� It is equally easy
to de	ne multi�dimensional arrays during execution by using dynamic allocation�

We 	rst allocate an appropriate block of memory for the two dimensional array size desired�
Since array storage in C is in row major form� we then treat the block as a sequence of rows with

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� dynaray	c

This program shows dynamic allocation of a block of memory

for elements of the type struct stdrec	 This is equivalent

to allocating memory for an array of the specified size	

The program reads in the number of students� allocates memory

for that many structures� gets data for the students� and prints

out the data	

��

include �stdio	h�

include �stdlib	h�

struct stdrec �

char name��
��

int id�

��

void getdata�struct stdrec � p� int n��

void printdata�struct stdrec � p� int n��

main��

� int n�

struct stdrec � p�

printf�����Dynamic Arrays � Student Records����n�n���

printf��Number of students� ���

scanf���d��c�� $n��

p � �struct stdrec ��malloc�n � �sizeof�struct stdrec����

if �p� �

getdata�p� n��

printdata�p� n��

�

else

printf��Out of Memory�n���

�

����� DYNAMIC MEMORY ALLOCATION ���

�� Gets data for n students ��

void getdata�struct stdrec � p� int n�

� int id� i�

for �i �
� i � n� i��� �

printf��Student Name� ���

gets�p��name��

printf��Student ID� ���

scanf���d��c�� $p��id��

p���

�

�

�� Prints data for all students ��

void printdata�struct stdrec � p� int n�

� int i�

for �i �
� i � n� i��� �

printf��Student Name� ���
s �� p��name��

printf��ID� ��d�n�� p��id��

p���

�

�

Figure ������ Example code for a dynamic array of structures

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� dyn�aray	c

This program shows a dynamic specification of array size for

a two dimensional array	 Appropriate block of memory is then

allocated	 This block is then treated as a two dimensional

array of the size specified	

��

include �stdio	h�

include �stdlib	h�

void get�data�int � p� int rows� int cols��

void print�data�int � p� int rows� int cols��

main��

� int cols� rows�

int �p�

printf�����Dynamic Arrays � Two Dimensions����n�n���

printf��Type number of rows� ���

scanf���d�� $rows��

printf��Type number of columns� ���

scanf���d�� $cols��

p � �int ��malloc�rows � cols � sizeof�int���

get�data�p� rows� cols��

print�data�p� rows� cols��

�

the desired number of columns� The pointer to the allocated block is a pointer to the base type
of the array� therefore� it must be incremented to access the next column in a given row� It must
also be incremented to move from the last column of a row to the 	rst column of the next row�

Figure ����� shows an example that asks the user to specify the number of rows and columns
for a two dimensional array� It then dynamically allocates a block of memory to accommodate the
array� The block is then treated as a two dimensional array with the speci	ed rows and columns�
Data is read into the array� and then the array is printed� A sample output is shown below�

���Dynamic Arrays � Two Dimensions���

Type number of rows� �

Type number of columns� �

Type a row of integers with � columns� � � �

Type a row of integers with � columns� � � #

The array is�

� � �

� � #

����� DYNAMIC MEMORY ALLOCATION ���

�� Gets data for a two dimensional array pointed to by int �� p�

with specified rows and cols	

��

void get�data�int � p� int rows� int cols�

� int i� j�

for �i �
� i � rows� i��� �

printf��Type a row of integers with �d columns� �� cols��

for �j �
� j � cols� j��� �

scanf���d�� p��

p���

�

�

�

�� Prints data in an array pointed to by int �� p� with

specified rows and cols	

��

void print�data�int � p� int rows� int cols�

� int i� j�

printf��The array is��n���

for �i �
� i � rows� i��� �

for �j �
� j � cols� j��� �

printf����d�� �p��

p���

�

printf���n���

�

�

Figure ������ Dynamic allocation for �D arrays

��� CHAPTER ��� STORAGE CLASS AND SCOPE

���� Pointers to Functions

We saw earlier that functions have a storage class and scope� similar to variables� In C� it is
also possible to de	ne and use function pointers� i�e� pointer variables which point to functions�
Function pointers can be declared� assigned values and then used to access the functions they
point to� Function pointers are declared as follows�

int ��fp����

double ��fptr����

Here� fp is declared as a pointer to a function that returns int type� and fptr is a pointer to
a function that returns double� The interpretation is as follows for the 	rst declaration� the
dereferenced value of fp� i�e� ��fp� followed by �� indicates a function� which returns integer
type� The parentheses are essential in the declarations� The declaration without the parentheses�

int �fp���

declares a function fp that returns an integer pointer�
We can assign values to function pointer variables by making use of the fact that� in C� the

name of a function� used in an expression by itself� is a pointer to that function� For example� if
isquare�� and square�� are declared as follows�

int isquare�int n��

double square�double x��

the names of these functions� isquare and square� are pointers to those functions� We can assign
them to pointer variables�

fp � isquare�

fptr � square�

The functions can now be accessed� i�e� called� by dereferencing the function pointers�

m � ��fp��n�� �� calls isquare�� with n as argument ��

y � ��fptr��x�� �� calls square�� with x as argument ��

Function pointers can be passed as parameters in function calls and can be returned as function
values� Use of function pointers as parameters makes for �exible functions and programs� An
example will illustrate the approach� Suppose we wish to sum integers in a speci	ed range from x
to y� We can easily implement a function to do so�

�� File� sumutil	h ��

int sum�int�int x� int y��

�� File� sumutil	c ��

include �stdio	h�

include �sumutil	h�

�� Function sums integers from x to y	 ��

int sum�int�int x� int y�

� int i� cumsum �
�

����� POINTERS TO FUNCTIONS ���

for �i � x� i �� y� i���

cumsum �� i�

return cumsum�

�

The 	le sumutil	h contains prototypes for all the functions written in sumutil	c� Next� suppose
we wish to sum squares of integers from x to y� We must write another function to do so�

�� File� sumutil	h � continued ��

int sum�squares�int x� int y��

int isquare�int x��

�� File� sumutil	c � continued ��

�� Function sums squares of integers form x to y	 ��

int sum�squares�int x� int y�

� int i� cumsum �
�

for �i � x� i �� y� i���

cumsum �� isquare�i��

return cumsum�

�

�� Function returns the square of x	 ��

int isquare�int x�

�

return x � x�

�

Function isquare�� returns the integer square of i� The constructions of the two functions
sum int�� and sum squares�� are identical� In both cases� we cumulatively add either the integers
themselves or squares of the integers� A function iself��� which returns the value of the integer
argument� can be used in sum int�� to make the functions truly identical� Here is a modi	ed
function that uses iself���

�� File� sumutil	h � continued ��

int sum�integers�int x� int y��

int iself�int x��

�� File� sumutil	c � continued ��

�� Function sums integers from x to y	 ��

int sum�integers�int x� int y�

� int i� cumsum �
�

for �i � x� i �� y� i���

cumsum �� iself�i��

return cumsum�

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�

�� Function returns the argument x	 ��

int iself�int x�

�

return x�

�

The two sum functions� sum integers�� and sum squares��� are now identical except for the
functions used in the cumulative sum expressions� In one case� we use iself��� in the other case�
isquare��� It is clear that a single more �exible generic sum function can be written by passing
a function pointer� fp� as an argument with a value pointing to the appropriate function to use�
The cumulative sum expression would then take the form�

cumsum �� ��fp��i��

Here is the implementation�

�� File� sumutil	h � continued ��

int sum�gen�int ��fp���� int x� int y��

�� File� sumutil	c � continued ��

�� Function sums values of �fp applied to integers from x to y	 ��

int sum�gen�int ��fp���� int x� int y�

� int i� cumsum �
�

for �i � x� i �� y� i���

cumsum �� ��fp��i��

return cumsum�

�

Finally� we can improve the generic sum function by using a pointer to a function that updates
the integer using a speci	ed step size�

�� File� sumutil	h � continued ��

int sum�int ��fp���� int x� int ��up���� int step� int y��

�� File� sumutil	c � continued ��

�� Function returns the sum of function �fp applied

to integers from x to y� incremented by �up in step size	

��

int sum�int ��fp���� int x� int ��up���� int step� int y�

� int i� cumsum �
�

for �i � x� i �� y� i � ��up��i� step��

cumsum �� ��fp��i��

return cumsum�

�

����� POINTERS TO FUNCTIONS ��

The function pointed to by ��up� takes two arguments� an integer to be updated and the step size�
The generic function sum�� can now be used to sum ��fp��i� applied to integers i� which are
updated by ��up��i� step�� The pointer variable� fp can point to any function that processes
an integer and returns an integer� Similarly� up can point to any function that returns an updated
integer value�

Let us now write a program that reads starting and ending integers as well as step size until
EOF� For each set of data read� the program 	rst computes and prints the sum of integers using
sum int� and sum of squares using sum squares��� These two sums are in steps of one� since that
is how the functions are written� Next� the program uses the above generic sum function sum��

to compute sums of integers and squares in speci	ed step sizes� Figure ����� shows the program�
The update function used is iincr��� which merely returns x plus the step size� The program
source 	les� sums	c and sumutil	c� are compiled separately and linked together� A sample run
of the program is shown below�

Sample Session�

���Function Pointers � Sums of Integer Function Values���

Type starting� ending limits� and step size� EOF to quit

� � �

Sum of integers from � to � in steps of � � ��

Sum of squares from � to � in steps of � � ���

Sum of integers from � to � in steps of � is ��

Sum of squares from � to � in steps of � is ���

� � �

Sum of integers from � to � in steps of � � ��

Sum of squares from � to � in steps of � � ���

Sum of integers from � to � in steps of � is ��

Sum of squares from � to � in steps of � is !�

� � �

Sum of integers from � to � in steps of � � ��

Sum of squares from � to � in steps of � � ���

Sum of integers from � to � in steps of � is �

Sum of squares from � to � in steps of � is ��

�D

For each set of input data� the output 	rst shows sums of integers and squares in steps of one�
and then in speci	ed steps�

������ Function Pointers as Returned Values

It is also possible for functions to return a function pointer as a value� This ability increases
the �exibility of programs� We will use a simple example to implement a function that returns
a function pointer� The example is merely illustrative� and it would be easy to write a program
to perform the same task without the use of a function pointer� Let us de	ne a type� which is a
pointer to a function that returns an integer�

typedef int ��PFI����

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� sums	c

Other Source Files� sumutil	c

Header Files� sumutil	h

This program illustrates the use of function pointers to define a

single function sum�� that sums powers of integers between specified

limits	 The function is then applied to sum integers and squares	

Individual functions to sum integers and squares are also implemented	

The results are printed out for both approaches	

��

include �stdio	h�

include �sumutil	h�

main��

� int x� y� step� isquare��� iself��� iincr���

printf�����Function Pointers � Sums of Function Values����n�n���

printf��Type starting� ending limits� and step size� EOF to quit�n���

while �scanf���d �d �d�� $x� $y� $step� � EOF� �

printf��Sum of integers from �d to �d in steps of � � �d�n��

x� y� sum�int�x� y���

printf��Sum of squares from �d to �d in steps of � � �d�n��

x� y� sum�squares�x� y���

printf��Sum of integers from �d to �d in steps of �d is �d�n��

x� y� step� sum�iself� x� iincr� step� y���

printf��Sum of squares from �d to �d in steps of �d is �d�n��

x� y� step� sum�isquare� x� iincr� step� y���

�

�

�� File� sumutil	h � continued ��

int iincr�int x� int step��

�� File� sumutil	c � continued ��

�� Increments x by size of step	 ��

int iincr�int x� int step�

�

return x � step�

�

Figure ������ Program illustrating function pointers

����� SUMMARY ���

We can now use PFI as a data type in declaring variables� parameters� and returned values�
Our example program repeatedly reads an integer until EOF� If an integer is odd� the program

computes its cube� otherwise� the program computes its square� For each integer� we call a function
evenodd�� which returns a function pointer either to icube�� or to isquare�� depending on
whether the integer is odd or even� The function pointer returned by evenodd�� and the integer
itself are both passed to a function process��� which applies the dereferenced function pointer to
the integer� The result is then printed� Figure ����� shows the program driver� For each integer�
the program calls evenodd�� to get a returned function pointer which is assigned to fptr� Then� it
calls process�� to apply ��fptr� to x� The result is then printed� Let us now write the function
evenodd�� that takes an integer as an argument� If the argument is odd� the function returns
a pointer to icube��� otherwise� it returns a pointer to isquare��� The function evenodd���
together with functions process�� and icube�� are also shown in Figure ������

When the program 	les fptr	c and sumutil	c are compiled and linked� the sample session is�

���Function Pointers � Squares and Cubes���

Type integers� EOF to quit

�

Integer � �� power � or � � ��

�

Integer � �� power � or � � ���

�

Integer � �� power � or � � �#

�D

Using function pointers as parameters we can write generic functions� By returning function
pointers� the called functions can select the functions that must be used in di�erent circumstances�
Function pointers help make a program compact as well as intelligent�

���� Summary

In this chapter we have discussed the concepts of storage class and scope for variables in a C
program� The language provides four storage classes� automatic� register� external� and static�
By default� variables declared in functions are of class auto� meaning that memory is allocated
for them when the block is entered and automatically deallocated when the block is exited� Such
variables may be referenced by name only within the block in which they are declared� i�e� they
have local scope� Register storage class� declared with the class speci	er� register� are a spe�
cial case of automatic variables� This class suggests to the compiler that storage for the variable
should be allocated in the CPU registers rather than memory� Use of this class should be lim�
ited to frequently referenced� time critical variables and only with familiarity with the particular
architecture on which the program will be run�

External storage class is used for variables which should remain allocated for the entire ex�
ecution of a program� and which have global scope� In using external variables� the operation
of de�ning the variable �allocating memory for it� may be independent of declaring the variable
�associating a name with the variable�� An external variable must be de	ned exactly once� by

��� CHAPTER ��� STORAGE CLASS AND SCOPE

�� File� fptr	c

Other Source Files� sumutil	c

Header Files� sumutil	h

This program illustrates the use of function pointers� both as

parameters in function calls and as returned values	 Program

reads integers until EOF	 As each integer is read� the program

calls a function evenodd�� which returns a function pointer	

This function pointer is then passed to process�� to process

the integer	

evenodd�� returns a pointer to isquare�� if the argument is even�

and to icube�� otherwise	 Function process�� applies its first

argument� which is a function pointer� to its second argument� which

is an integer	

��

include �stdio	h�

include �sumutil	h�

typedef int ��PFI����

PFI evenodd�int x��

int process�PFI fp� int x��

main��

� int x� y� z�

PFI fptr�

printf�����Function Pointers � Squares and Cubes����n�n���

printf��Type integers� EOF to quit�n���

while �scanf���d�� $x� � EOF� �

fptr � evenodd�x��

y � process�fptr� x��

printf��Integer � �d� power � or � � �d�n�� x� y��

�

�

�� Function returns a function pointer	 If x is odd� it returns

a pointer to icube��	 Otherwise� it returns a pointer to

isquare��	

��

PFI evenodd�int x�

� int isquare��� icube���

if �x � ��

return icube� �� icube is a pointer to function icube�� ��

else

return isquare� �� isquare is a pointer to isquare�� ��

�

����� SUMMARY ���

�� Function returns the result of applying the dereferenced function

pointer fp to x	

��

int process�PFI fp� int x�

�

return ��fp��x�� �� dereferenced fp applied to x ��

�

�� File� sumutil	h � continued ��

int icube�int x��

�� File� sumutil	c � continued ��

�� Function returns the cube of x	 ��

int icube�int x�

�

return x � x � x�

�

Figure ������ Driver illustrating function pointer return values

specifying its type and name outside any function block� A declaration speci	ed as extern de�
clares the name of the variable without allocating storage� with the expectation that it has been
de	ned elsewhere�

The storage class� static� is used for variables which have local scope� but which remain allocated
for the entire program execution� Such variables� while local to a particular function� will retain
their values across repeated calls and returns�

We have also seen how memory for variables of di�erent storage classes is allocated in the
memory of the computer� automatic variables are allocated and deallocated on the stack� whereas
external and static variables are allocated from the heap�

In addition to storage allocated by the compiler� we have seen that additional storage can
be allocated dynamically �i�e� at run time� using the malloc�� or calloc system functions� and
deallocated by the free�� function� Data stored in dynamically allocated memory is always
referenced indirectly�

Finally� we have expanded our discussion of functions� seeing that they have storage class� like
variables� and that we can declare and access function indirectly through pointers� Functions are
generally external and have global scope� However� we can limit the scope of a function to be
within a single source 	le by declaring it to be of static storage class�

��� CHAPTER ��� STORAGE CLASS AND SCOPE

���� Problems

�� Modify the functions getchr�� and ungetchr�� of Section ������ so that any number of
characters� up to a maximum of ��� can be put back into the input stream� Use these
functions in a program that reads characters and puts all vowels back until a newline is
read� At that point� the program writes the vowels that were put back in the input stream�

�� Write a program that reads scores from a 	le� but uses a dynamically allocated array� Assume
that the 	rst line of the 	le has the number of students� Read the value of the number of
students� dynamically allocate an array for the scores� read the scores� and print them out�

� Modify � so a student record is a structure� The 	le lists the number of students in the 	rst
line and the number of exams in the second line� Assume that an old weighted average is
present as the last column in the 	le and that the 	rst two columns are student name and an
id number� Use dynamic allocation to write a menu�driven grading program that allows all
possible options� add student� delete student� change grade� add new exam scores� compute
various averages� etc�

�� Write a program that reads and sorts an array of numbers� Use a function to sort the array�
but use a pointer to a function to make a comparison of two numbers� If the function returns
True� swap the elements� otherwise� the elements are in correct order� Test the program with
functions to sort in increasing and in decreasing order�

�� Write a program that reads an array of transliterated strings that represent equivalent strings
in some language� The strings are to be sorted according to the alphabet of that language�
First order the ASCII characters according to the alphabet of that language� Then use
a function that returns True if two characters are ordered in a correct sequence� Use the
function to sort the array of strings�

�� Use a structure with two members to represent either a complex number or a rational
number� We will call each of them an ordered pair number� Write a generic function to add
two ordered pair numbers where the addition is performed by a function a pointer to which
is passed as an argument�

�� Repeat � to subtract two ordered pair numbers�

�� Repeat � to multiply two ordered pair numbers�

�� Repeat � to divide two ordered pair numbers�

��� Write a lexical analyzer that 	nds tokens of the following type in a string�

identifier

integer

float

operator

end of string

����� PROBLEMS ���

��� Repeat �� without using an external variable� Use a pointer to a character as an argument to
a function get token�� which indirectly returns the character read� but unused in a token�

��� Repeat ��� but use a static character variable in get token�� instead of indirectly returning
the character read but unused� The static character will remain unchanged and may be used
for the start of the next token�

��� CHAPTER ��� STORAGE CLASS AND SCOPE

Chapter ��

Engineering Programming Examples

In the preceding chapters we have presented the major features of the C language for declaring and
accessing data� and controlling program execution �ow including both the syntax required by the
language and the semantics of the statements� We have also discussed �good� programming style
and organization emphasizing the top down design process� In this chapter we make use of these
features and techniques to develop several programs for commonly used operations in engineering
and scienti	c computing�

We begin with with operations on matrices� including transforms and sums and products�
We next discuss complex numbers together with their representation as a user de	ned data type
and their uses� A program to 	nd solutions to systems of linear algebraic equations is presented
next using our complex number functions� followed by another common applications of complex
number� the analysis of electrical circuits� We conclude the chapter with a program for numeric
integration of arbitrary algebraic functions�

���� Matrices

We saw in Chapter � that systems of simultaneous linear algebraic equations can be represented
and manipulated using two dimensional arrays� For example� a set of n equations in m unknowns�

a��� � x� � a��� � x� � � � �� a��m�� � xm�� � y�

a��� � x� � a��� � x� � � � �� a��m�� � xm�� � y�
���

an���� � x� � an���� � x� � � � �� an���m�� � xm�� � yn��

Mathematically� such a system can be thought of in terms of a matrix equation written in the

form�

A�X � Y

where A is a matrix� i�e� a two dimensional array of coe�cients ai�j� X is a vector� i�e� a one
dimensional array of elements xj� and Y is also a vector� yi� In a matrix representation of algebraic
equations� the number of rows corresponds to the number of equations� and the number of columns
corresponds to the number of unknowns� �In our case� the values of i range from � through n� ��

���

��� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

and those of j range from � through m � ��� When the number of rows and columns are equal�
the matrix is square� otherwise the matrix is rectangular�

Such a matrix equation may be viewed as a transformation of a vector�X � to another vector�
Y � by matrix operator A� Matrix formalism facilitates combinations of transformations� deriving
properties of transformations� as well as 	nding solutions of equations�

In the next few sections� we will illustrate some useful matrix manipulations and begin to build
our own library of utility functions for matrix operations� Many of the functions written can be
used in a variety of programs� therefore� we will organize our code in several source 	les� The
	le matutil	c will contain all the functions we write for matrix manipulations� As usual� the
prototypes for these functions are assumed to be in the 	le matutil	h�

In constructing our library� we 	rst implement basic input�output functions for matrices and
vectors� the function readmatrix�� reads the elements of a matrix into a two dimensional array�
and the function printmatrix�� prints the matrix elements� �These functions are similar to
the functions getcoeffs�� and pr�adbl�� in Chapter �� except that the right hand side is not
included in the matrix array�� Vectors are read and printed by functions readvector�� and
printvector��� We assume the number of rows and columns are passed as parameters� and that
the matrices are arrays of type double� The basic I�O functions for matrices and vectors and
the requisite header 	les are straightforward to develop� and are shown in Figure ���� These
functions are quite simple� The number of rows and columns for the two dimensional arrays are
passed as parameters� as are the sizes of the one dimensional arrays� The functions readmatrix��
and readvector�� return a cumulative sum of the input values� If desired� these sums may be
used by the calling function to detect a matrix or a vector with all zero elements�

������ Matrix Operations	 Transforms

The 	rst operation we will implement is the transformation of a vector X by a matrix A into a
vector Y�

A�X � Y

In other words� given the values of coe�cients and the variables on the left hand side� 	nd the
values on the right hand side of the equations� Such linear transformation of a set of values
is a common phenomenon in many practical applications such as electronic circuits� mechanical
systems� chemical combinations� economic models� interactive relationships� and so forth�

If matrix A has r rows and c columns� the algorithm for the ith equation is�

y�i� � a�i��
��x�
� � a�i�����x��� �			� a�i��c����x�c���

This is applied for all the rows from � to r � �� Translating this algorithm into C code� Figure
���� shows the function mapvector�� that uses A to map �i�e� transform� vector X into vector
Y �

With these utility functions in had� we can now write a driver program that reads a matrix
and then transforms vectors until a zero vector is entered� The code is shown in Figure ���
� The
program declares all array ranges of size MAX and uses the function getrc�� to read the number
of rows and columns in the matrix� It then reads and prints the transform matrix of the speci	ed
size� Then� the program reads vectors until a zero vector is entered� and for each vector maps it

