
����� MATRICES ���

�� File� matdef�h ��

�define MAX ��

�� File� matutil�h ��

�include �matdef�h�

int readmatrix	double x
�
MAX�� int r� int c
�

void printmatrix	double x
�
MAX�� int r� int c
�

int readvector	double x
�� int n
�

void printvector	double x
�� int n
�

�� File� matutil�c ��

�include �stdio�h�

�include �matdef�h�

�include �matutil�h�

�� Reads a matrix x with r rows and c columns� MAX

provides the maximum column range for the array�

��

int readmatrix	double x
�
MAX�� int r� int c


� int i� j�

double z� sum � ��

printf	�Matrix data entry��n�
�

for 	i � �� i � r� i��
 � �� for each row of matrix ��

printf	�Type a row of �d numbers�n�� c
�

for	j � �� j � c� j��
� �� read c elements of the row ��

scanf	��lf�� �z
�

x
i�
j� � z�

sum �� z�

�

�

return sum�

�

�� Prints a matrix with r rows and c columns ��

void printmatrix	double x
�
MAX�� int r� int c


� int i� j�

printf	�Matrix is��n�
�

for 	i � �� i � r� i��
 � �� for each row ��

for	j � �� j � c� j��
 �� print the row ��

printf	��f ��x
i�
j�
�

printf	��n�
�

�

�



��� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

�� Reads a vector of size n� Function returns the sum

of input values�

��

int readvector	double x
�� int n


� int i�

double sum � ��

printf	�Type �d numbers� �all zeros to quit�� �� n
�

for 	i � �� i � n� i��
 �

scanf	��lf�� x � i
�

sum �� x
i��

�

return sum�

�

�� Prints a vector of size n� ��

void printvector	double x
�� int n


� int i�

printf	�Vector is��n�
�

for 	i � �� i � n� i��


printf	��f�n�� x
i�
�

�

Figure ����� Matrix and Vector I�O Functions
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�� File� matutil�h � continued ��

void mapvector	double a
�
MAX�� double x
�� double y
��

int r� int c
�

�� File� matutil�c � continued ��

�� Computes a � x ����� y� where a
�
� has r rows and c columns� ��

void mapvector	double a
�
MAX�� double x
�� double y
��

int r� int c


� int i� j�

for 	i � �� i � r� i��
�

y
i� � ��

for 	j � �� j � c� j��


y
i� �� a
i�
j� � x
j��

�

�

Figure ���	� Code for mapvector	


by mapvector	
 into a new vector which is printed� The function getrc	
 shown in Figure ����
and is included in 
le matutil�c� The source 
les mat�c and matutil�c are compiled and linked
and tested producing the following sample session�

���Matrices and Vector Transformations���

Rows� �

Columns� �

Matrix data entry�

Type a row of � numbers

� � �

Type a row of � numbers

� � �

Matrix is�

�������� �������� ��������

�������� �������� ��������

Type � numbers� �all zeros to quit�� � � �

Transformed Vector is�

���������

���������
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�� File� mat�c

Other Source Files� matutil�c

Header Files� matutil�h

This program reads a matrix� It then repeatedly reads vectors�

Each vector is transformed by the matrix and printed out�

��

�include �stdio�h�

�include �matdef�h�

�include �matutil�h�

main	


� double a
MAX�
MAX��

double x
MAX�� y
MAX��

int r� c�

printf	����Matrices and Vector Transformations����n�n�
�

getrc	�r� �c
�

readmatrix	a� r� c
�

printmatrix	a� r� c
�

while 	readvector	x� c

 �

mapvector	a� x� y� r� c
�

printf	�Transformed �
� �� Prefix to printvector	
 mesg ��

printvector	y� r
�

�

�

Figure ����� Driver to read and transform vectors
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�� File� matutil�h � continued ��

void getrc	int � rp� int � cp
�

�� File� matutil�c � continued ��

�� Gets the number of rows and columns for a matrix� rp point to

rows and cp points to columns�

��

void getrc	int � rp� int � cp


�

printf	�Rows� �
�

scanf	��d�� rp
�

printf	�Columns� �
�

scanf	��d�� cp
�

�

Figure ����� Code for getrc	


Type � numbers� �all zeros to quit�� � � �

Transformed Vector is�

���������

���������

Type � numbers� �all zeros to quit�� ��� � ���

Transformed Vector is�

���������

���������

Type � numbers� �all zeros to quit�� � � �

������ Matrix Operations� Sums and Products

Other common manipulations involving matrices require addition of two matrices� multiplication

of two matrices� and inversion of matrices� In this section� we will implement matrix addition and

matrix multiplication algorithms� Addition of two matrices may arise when two sets of equations

relate the same set of variables� For example� consider the matrix equations�

A�X � Y �

B �X � Y �

Corresponding equations of the two sets can be added together to obtain a combined single set�

C �X � Y
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�� File� matutil�h � continued ��

void matsum	double c
�
MAX�� double a
�
MAX��

double b
�
MAX�� int rows� int cols
�

�� File� matutil�c � continued ��

�� Adds matrix a to matrix b to generate a matrix c� Parameters

r and c specify the rows and columns�

��

void matsum	double c
�
MAX�� double a
�
MAX��

double b
�
MAX�� int rows� int cols


� int i� j�

for 	i � �� i � rows� i��


for 	j � �� j � cols� j��


c
i�
j� � a
i�
j� � b
i�
j��

�

Figure ����� Code to add rectangular matrices

where� in matrix terms�

C � A �B

and

Y � Y � � Y �

Vectors are special cases of rectangular matrices having n rows and � column� We will therefore
implement a single function that sums two rectangular matrices� The sum of matrices A and B
generates a new matrix� say C� If the elements of matrix A are a
i�
j�� and those of B are
b
i�
j�� then the sum matrix� C with elements c
i�
j�� is determined as follows�

c
i�
j� � a
i�
j� � b
i�
j�

The implementation of matrix addition is easy� and the code is shown in Figure �����

Multiplication of two matrices A and B results when combining two transformations� i�e�

where a vector being transformed by a matrix A is itself the result of a transformation by a

matrix B� Consider the following two sets of equations�

A� Z � Y

and

B �X � Z
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Since� by the second equation� Z equals B �X � we can substitute B �X for Z in the 
rst

equation�

A �B �X � Y

Or� the combined equation results in�

C �X � Y

The product of matrices A and B generates a matrix C� If the number of rows and columns of
A are given by r� and c�� and those of B are given by r	 and c	� then� the number of elements
of Z represents the number of columns of A and the number of rows of B� i�e� c� � r	� Also� C
must have the same number of rows as A and the same number of columns as B� That is� the
number of rows and columns of C must be r� and c	� It turns out that each c
i�
j� is a result
of a scalar product of row i of matrix A and column j of matrix B� Let the ith row of A and the
jth column of B be�

a
i�
�� a
i�
�� ��� a
i�
c� � ��

b
��
j� b
��
j� ��� b
r� � ��
j�

then� the scalar product� c
i�
j�� is given by�

a
i�
�� � b
��
j� � a
i�
�� � b
��
j� � ��� � a
i�
c���� � b
r����
j�

With this algorithm� the sum is easily implemented as a cumulative sum� initialized to zero� Each
pass through the loop adds one product term� a
i�
k� � b
k�
j�� for k from zero through c����
That is� the following loop computes c
i�
j��

c
i�
j� � ��

for 	k � �� k � c�� k��


c
i�
j� �� a
i�
k� � b
k�
j��

Such a loop is repeated for all appropriate i rows and j columns� The code for matrix product is
shown in Figure �����

We can now write a simple example that uses the matrix functions de
ned above as shown in
Figure ����� The program adds and multiplies matrices� To keep the program simple� we assume
square matrices� The program 
rst reads in the size of square matrices� and then reads in the
two matrices� These matrices are added and multiplied� and the resultant matrices are printed�
A sample session is shown below�

���Square Matrices � Sums and Products���

Size of square matrices� �

Matrix data entry�

Type a row of � numbers

� �

Type a row of � numbers

� �
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�� File� matutil�h � continued ��

void matprod	double c
�
MAX�� double a
�
MAX�� double b
�
MAX��

int r�� int c�� int r�� int c�
�

�� File� matutil�c � continued ��

�� Matrix multiplication of matrix a 	r� rows and c� columns


and matrix b 	r� rows and c� columns
� Result is matrix c with

r� rows and c� columns�

��

void matprod	double c
�
MAX�� double a
�
MAX�� double b
�
MAX��

int r�� int c�� int r�� int c�


� int i� j� k�

if 	c� �� r�
 �

printf	�Error � Columns of matrix A do not match rows of B�n�
�

return�

�

for 	i � �� i � r�� i��


for 	j � �� j � c�� j��
 �

c
i�
j� � ��

for 	k � �� k � c�� k��


c
i�
j� �� a
i�
k� � b
k�
j��

�

�

Figure ����� Code for matrix product
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�� File� matops�c

Other Source Files� matutil�c

Header Files� matutil�h

This program adds and multiplies two square matrices�

The matrices are read into two dimensional arrays�

��

�include �stdio�h�

�include �matdef�h�

�include �matutil�h�

main	


� double a
MAX�
MAX�� b
MAX�
MAX�� c
MAX�
MAX��

int n�

printf	����Square Matrices � Sums and Products����n�n�
�

printf	�Size of square matrices� �
�

scanf	��d�� �n
�

readmatrix	a� n� n
�

readmatrix	b� n� n
�

matsum	c� a� b� n� n
�

printf	�Sum �
� �� Prefix to msg in printmatrix	
 ��

printmatrix	c� n� n
�

matprod	c� a� b� n� n� n� n
�

printf	�Product �
� �� Prefix to msg in printmatrix	
 ��

printmatrix	c� n� n
�

�

Figure ����� Driver to test matrix operations
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Matrix data entry�

Type a row of � numbers

� �

Type a row of � numbers

� 	

Sum Matrix is�

�������� ��������

 ������� ���������

Product Matrix is�

��������� ���������

��������� ���������

Another important matrix operation is the inversion of a square matrix� An inverse matrix

has the property�

A
��
� A � A

��
� A � I

where A�� is the inverse matrix and I is a unit matrix with unit diagonal elements and zero

elements elsewhere� The unit matrix has the property�

I �X � X � I � X

If A�X � Y � it follows that

A
��
� A�X � A

��
� Y

or

X � A
��
� Y

Thus� given the inverse matrix� the solution to the matrix equation for any Y is easily obtained�
Inversion of a matrix is somewhat more complex� An inverse of a matrix can be obtained

by the Gauss�Jordan method � a modi
ed version of the Gauss elimination method discussed
in Chapter �� A good reference ���� for matrix computational methods as well as other numeric
methods� is given at the end of this chapter�

���� Complex Numbers

Complex numbers are encountered in many mathematical applications� In this section� we will

rst review complex numbers and operations involving complex numbers� We will then repre�
sent complex numbers using structure types and implement many of the basic complex number
operations�

The squares of a real number� either positive or negative� is a positive number� Numbers whose
squares are negative cannot be real numbers� they are� therefore� called imaginary numbers� Thus�
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real

�ve

imag

�ve

�ve

�ve �

y

x

�
z � x � jy

Figure ���
� Complex Numbers in Rectangular Coordinates

imaginary numbers are the square roots of negative numbers� For example� consider�

z �
q
�jxj

Here jxj is the absolute value of x� and thus z is a square root of a negative number� i�e� an
imaginary number� Imaginary numbers are written in a normalized manner as follows�

z �
q
�� � jxj

�
p�� �

q
jxj

� j � y
where� j �

p��� and y �
q
jxj� Square root of �� is represented by the special symbol� i in

mathematics or j in Electrical Engineering� Thus� an imaginary number is represented by j times
a real number y� A complex number is a number that is sums of both a real and an imaginary
number�

z � x � j � y
Both x and y are real numbers� and z is a complex number� Either of the real numbers x or y can�
of course� be zero� in which case� the complex number reduces to either a real or an imaginary
number� The number x is called the real part of z� and y is called the imaginary part� Remember
that both the real part� x� and the imaginary part� y� are real numbers� It is j that is an imaginary
number� not y�

Complex numbers can be visualized geometrically as points on a two dimensional plane with
rectangular axes� real and imag� Then� the real part of a number is the projection of the point
onto the real axis� and the imaginary part of the number is the projection onto the imaginary axis
imag �see Figure ���
� For these reasons� the complex number representation as a sum of real and
imaginary parts is called representation in rectangular coordinates�

Addition� subtraction� multiplication� and division operators for complex numbers are de
ned
in terms of the same operator symbols as for real numbers� viz� �� �� �� �� The sum of two
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complex numbers is simply the sum of their real parts plus j times the sum of their imaginary
parts� Thus� if

z� � x� � j � y�

z	 � x	 � j � y	

then the sum of z� and z� is given by�

z� � z	 � �x� � x	� � j � �y� � y	�

The product of z� and z� is obtained by multiplying the two numbers� replacing j � j by ���
and collecting the real terms and the imaginary terms� Thus�

z� � z	 � �x� � j � y�� � �x	 � j � y	�

� �x� � x	 � y� � y	� � j � �x� � y	 � x	 � y���

Division of two complex numbers is a little more involved� First� we de
ne the complex conju�

gate� z�� of a number� z � x � j � y� as one with the same real part� x� but whose imaginary part
is �y� Thus� the complex conjugate of z is�

z� � x� j � y
Observe that the product of z and z� is real�

z � z� � �x � x � y � y� � j � �x � y � x � y�

� x � x � y � y�
Now� we can divide two complex numbers�

z�

z	
�

x� � j � y�

x	 � j � y	

To separate the result into real and imaginary parts� we 
rst make the denominator real by
multiplying both the numerator and the denominator by z	��

z�

z	
�

z� � z	�

z	 � z	�

�
�x� � j � y�� � �x	 � j � y	�

x	 � x	 � y	 � y	

�
x� � x	 � y� � y	

x	 � x	 � y	 � y	
� j � ��x� � y	 � x	 � y�

x	 � x	 � y	 � y	

With this description of complex numbers and operations on them� we would like to develop
programs that can work with them� Complex number is not a native data type in C� but we would
like to represent complex numbers in a program as if it were� We will de
ne an abstract data type�
complex� using typedef and de
ne functions to serve as operators on complex numbers�

We will represent complex numbers as ordered pairs of real and imaginary parts� �using rect�
angular form de
ned above�� and implement the ordered pairs as structures� We will use typedef

to de
ne a data type� rect� for this structure� �We choose the name rect because complex data
type with an identical structure is already de
ned in math�h� We can� of course� use the complex

type de
ned in math�h� but we de
ne a rect type to illustrate the use of typedef�� Figure ����
shows this de
nition and the functions for addition and multiplication of complex numbers� We
use type double in the structure rect for greater precision in computation� In a similar manner�
it is easy to write the remaining functions for subtraction and division of two complex numbers�
Implementation of these functions is left as an exercise�
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�� File� compdef�h ��

struct rect �

double real�

double imag�

��

typedef struct rect rect�

�� File� computil�h ��

rect addc	rect z�� rect z�
�

rect multc	rect z�� rect z�
�

�� File� computil�c ��

�include �stdio�h�

�include �math�h� �� math function protos� sqrt	
� atan	
� etc� ��

�include �compdef�h�

�include �computil�h�

�� Returns a sum of two complex numbers � rect form� ��

rect addc	rect z�� rect z�


� rect z�

z�real � z��real � z��real�

z�imag � z��imag � z��imag�

return z�

�

�� Returns a product of two complex numbers � rect form� ��

rect multc	rect z�� rect z�


� rect z�

z�real � z��real � z��real � z��imag � z��imag�

z�imag � z��real � z��imag � z��imag � z��real�

return z�

�

Figure ����� Complex number utility functions
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real

�ve

���
�
�
�
�
�
���

imag

�ve

�ve

�ve �

y

x

�
r

�

z

Figure ������ Complex Numbers in Polar Coordinates

������ Complex Numbers and Vectors

It is also possible to represent a point on a two dimensional plane in terms of polar coordinates�
Polar coordinates are given in terms of�

�� the length� r� of the �directional� line from the origin to the point� and

	� the counterclockwise angle� �� that the line makes with the reference axis� namely the positive
horizontal axis�

The directional line of length r at an angle � with respect to the reference axis is called a vector
�See Figure ������� The projection of the vector onto the real axis is r � cos���� and the projection
onto the imaginary axis is r � sin���� Thus� a complex number� represented by the pair �r� �� in
polar coordinates� can be written in rectangular coordinates as�

z � r � cos��� � j � r � sin���

� x � j � y

Thus� the real and imaginary parts� x and y� in terms of r and � are�

x � r � cos���

y � r � sin���

Since�

exp�j � �� � cos��� � j � sin���

z can also be written as�

z � r � exp�j � ��

As we shall soon see� this exponential form is convenient for multiplication and division�
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Given rectangular coordinates x and y� we can determine r and � as follows� We know�

x� � y� � r�

y

x
� tan���

so�

r �
q
x� � y�

� � arctan�
y

x
�

Observe that the length� r� is the square root of z � z�� The length r is called the magnitude of the
vector� and the angle � is called the angle or phase angle of the vector�

As we have seen� addition and subtraction of complex numbers is easy to perform in rectangular
coordinates� On the other hand� multiplication and division of two complex numbers in rectangular
coordinates is not so easy� Conversely� it is easy to perform multiplication and division in polar
coordinates� Given that two numbers are�

p� � r� � exp�j � ���

p	 � r	 � exp�j � �	�

It is easy to see that�

p� � p	 � r� � r	 � exp�j � ��� � �	��
p�

p	
�

r�

r	
� exp�j � ��� � �	���

From this analysis� we can implement complex numbers in polar coordinates as shown in
Figure ����� together with functions for multiplication and division in polar coordinates� It is
also important to be able to convert back and forth between rectangular and polar coordinates�
It is easy to write the necessary conversion routines to convert complex numbers in rectangular
coordinates to polar coordinates� and vice versa � they are shown in Figure ����	� The function
polar to rect	
 is quite straight forward� rect to polar	
 uses the arc tangent function atan	


de
ned in the standard library� This function returns an angle in the range ���	 to ��	� thus
we need to adjust the angle when the real part is zero and when it is negative� If the real part
is zero� the angle is ��	 if the imaginary part is positive� and ���	 if it is negative� Next� if the
real part is negative� the angle must be incremented by �� Since we use many standard library
trigonometric functions� the 
le math�h must be included at the head of computil�c and we must
link the math library when the program is compiled�

These functions provide a useful library for processing with complex numbers� Let us now
make use of them in two application programs�

������ Roots of Algebraic Equations

One such application where complex numbers occur is in 
nding roots of algebraic equations� A
linear algebraic equation of the form�

a � x � b � �
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�� File� compdef�h � continued ��

struct polar �

double r�

double theta�

��

typedef struct polar polar�

�� File� computil�h � continued ��

polar multp	polar p�� polar p�
�

polar divp	polar p�� polar p�
�

�� File� computil�c � continued ��

�� Returns a product of complex numbers � polar form� ��

polar multp	polar p�� polar p�


� polar p�

p�r � p��r � p��r�

p�theta � p��theta � p��theta�

return p�

�

�� Returns p� � p� � polar form� ��

polar divp	polar p�� polar p�


� polar p�

p�r � p��r � p��r�

p�theta � p��theta � p��theta�

return p�

�

Figure ������ Complex number utility functions in polar coordinates
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�� File� computil�h � continued ��

rect polar!to!rect	polar p
�

polar rect!to!polar	rect z
�

�� File� computil�c � continued ��

�� Returns the rect form of a number in polar form� ��

rect polar!to!rect	polar p


� rect z�

z�real � p�r � cos	p�theta
�

z�imag � p�r � sin	p�theta
�

return z�

�

�� Returns the polar form of a number in rect form� ��

�define PI ������ 

polar rect!to!polar	rect z


� polar p�

p�r � sqrt	z�real � z�real � z�imag � z�imag
�

if 	z�real �� �


p�theta � z�imag �� � " PI � � � � PI � ��

else

p�theta � atan	z�imag � z�real
�

if 	z�real � �


p�theta � PI � p�theta�

return p�

�

Figure ����	� Conversion from polar to rect and rect to polar
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in one unknown variable� x� can be easy to solve depending on the values of the coe�cients� a and
b� If a � � and b � �� the equation is homogeneous and has no unique solution� any value for x
will make the equation true� If a � � but b is non�zero� the equation has no solution� no value of
x will make it true� Otherwise� if a is non�zero� the solution for x is easily determined�

x � �b�a

A quadratic equation is a polynomial of second degree in x of the form�

a � x� � b � x � c � �

If a is zero� the equation reduces to a linear equation that is easy to solve� If a is non�zero� there
are two solutions�

x� �
�b �

p
b� � � � a � c
	 � a

x	 �
�b�p

b� � � � a � c
	 � a

The form of the solutions depends on the discriminant�

b� � � � a � c
If the discriminant is positive� the square root is a real number and the roots� x� and x	 are
both real numbers� If the discriminant is zero� the two roots are real and equal� Otherwise� if
the discriminant is negative� the square root is an imaginary number and the roots are complex
numbers�

x� �
�b

	 � a � j �
q

� � a � c� b��

	 � a

x	 �
�b

	 � a � j �
q

� � a � c� b��

	 � a
In fact� the two roots are complex conjugates� the real parts are the same� the imaginary parts
are negatives of each other� Complex roots of polynomials with real coe�cients always occur in
complex conjugate pairs�

We will now implement a program that 
nds the roots of a quadratic equation� and then tests
each root by evaluating the quadratic polynomial for that value of the variable� If the value is a
root� the polynomial must evaluate to zero� When testing roots� we must be able to evaluate the
polynomial for all possible values of roots� including complex values� For consistency in testing� we
will represent all roots as complex numbers with real roots having a zero imaginary part� Therefore�
we will need a function to force a real number into a complex number� as well as a function to
make a complex number given its real and imaginary parts� These functions are shown in Figure
������ and are added to the 
le computil�c with their prototypes in computils�h� Finally� since
complex numbers are not a native data type in C� we will also need a function to print complex
numbers in the accepted form� If the number is real� it must print only the real part� If the
number is imaginary� it must print only j times the imaginary part� Otherwise� it must print a
complex number as a� j � b or a� j � b� depending on the sign of the imaginary part� The function
is also shown in Figure ������
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�� File� computil�h � continued ��

rect make!rect	double x� double y
�

rect force!rect	double x
�

void print!rect	rect z
�

�� File� computil�c � continued ��

�� Makes a complex number in rect form� ��

rect make!rect	double x� double y


� rect z�

z�real � x�

z�imag � y�

return z�

�

�� Forces a real number to a complex number � rect form� ��

rect force!rect	double x


� rect z�

z�real � x�

z�imag � ��

return z�

�

�� Prints a complex number in rect form� ��

void print!rect	rect z


�

if 	z�real �� � �� z�imag �� �
 �� if number is zero ��

printf	���
� �� print zero� ��

if 	z�real �� �
 �� print real part� if non�zero ��

printf	��f �� z�real
�

if 	z�imag �� �
 � �� print imag part� if non�zero ��

if 	z�imag � �


printf	�� j � �f�� z�imag
�

else if 	z�imag � �


printf	�� j � �f�� �z�imag
�

�

printf	��n�
�

�

Figure ������ Code for make rect	
 and force rect	
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With all of these utility functions completed� the program logic is now simple to implement�
It reads in the coe�cients a� b� c of the quadratic equation and uses the function findroots	
 to

nd the roots of the quadratic� The function forces the roots to complex form and returns them
indirectly� The arguments of findroots	
 are the coe�cients of the quadratic� and pointers to
the two roots� The program then uses the function eval quad	
 to verify each root by evaluating
the quadratic polynomial at that value� The arguments of eval quad	
 are the coe�cients of the
quadratic� and the value at which the quadratic is to be evaluated� The code for the driver is
shown in Figure ������ For each set of coe�cients� main	
 checks if a is zero and b is non�zero�
in which case it prints that the equation is linear with root �c�b� Otherwise� if both a and b are
zero� it prints an invalid equation message� and in either case continues to read the next set of
coe�cients� On the other hand� if a is non�zero� the driver calls findroots	
 to 
nd the roots as
complex numbers and returns them by indirectly to z� and z�� Each root is printed and veri
ed
using eval quad	
� The process continues until end of 
le�

We next implement the function findroots	
 shown in Figure ������ It computes the roots�
forces them to complex numbers and returns the values through the pointer parameters�

Finally� we write eval quad	
 to evaluate a quadratic polynomial at a given complex value of
the unknown variable� Since the value of the unknown� x is complex� we force all coe�cients to
complex numbers before using our utility functions addc	
 and multc	
� To reduce the number
of multiplications required to evaluate the polynomial we perform the expression

a � x� � b � x � c � a � x � c � b � x � c

� ���a � z� � b� � z� � c

The function is shown in Figure ����� The complex variable� w� is initialized to zero and then
used for the cumulative complex sum of the polynomial� As we saw in Chapter �� due to errors in
rounding and �oating point number representation� our result may not be precisely zero� Therefore�
eval quad	
 checks that w�real and w�imag are su�ciently close to zero using the library function
fabs	
 to verify the solution and print an appropriate message� A sample run of the program is
shown below�

���Roots of Quadratic Equations���

Quadratic Equation� a � x � x � b � x � c � �

Type coefficients a b c� EOF to quit

� � �

z� � ���#����� � j � ��� � ��

The value is verified as a root of the equation

z� � ���#����� � j � ��� � ��

The value is verified as a root of the equation

� � �

z� � ���������

The value is verified as a root of the equation

z� � ���������

The value is verified as a root of the equation

� � �

z� � ��������� � j � ��������

The value is verified as a root of the equation
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�� File� roots�c

Other Source Files� computil�c

Header Files� compdef�h� computil�h

This program finds the roots of quadratic equations� For each

equation� the program verifies that the roots make the

quadratic polynomial evaluate to zero� All roots� including real

roots� are treated as complex roots�

��

�include �stdio�h�

�include �math�h� �� needed in this file and in computil�c ��

�include �compdef�h� �� defines rect and polar types ��

�include �computil�h� �� prototypes for functions in computil�c ��

void eval!quad	double a� double b� double c� rect z
�

void findroots	double a� double b� double c� rect �zp�� rect �zp�
�

main	


� rect z�� z��

double a� b� c� x�

printf	����Roots of Quadratic Equations����n�n�
�

printf	�Quadratic Equation� a � x � x � b � x � c � ��n�
�

printf	�Type coefficients a b c� EOF to quit�n�
�

while 	scanf	��lf �lf �lf�� �a� �b� �c
 �� EOF
 �

if 	a �� �
 �

if 	b �� �
 �

printf	�Linear equation � root is �f�n�� � c � b
�

continue�

�

else �

printf	�Invalid equation�n�
�

continue�

�

�

else

findroots	a� b� c� �z�� �z�
�

printf	�z� � �
�

print!rect	z�
�

eval!quad	a� b� c� z�
�

printf	�z� � �
�

print!rect	z�
�

eval!quad	a� b� c� z�
�

�

�

Figure ������ Code for quadratic solver driver
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�� File� roots�c � continued ��

�� Finds the roots of a quadratic equation� Roots are forced

to complex values and stored where zp� and zp� point�

��

void findroots	double a� double b� double c� rect �zp�� rect �zp�


� double discr� x� x�r� x�r� x�i� x�i�

rect z�� z��

x � � � a�

discr � b � b � � � a � c�

if 	discr �� �
 �

x�r � �b � x � sqrt	discr
 � x�

x�r � �b � x � sqrt	discr
 � x�

x�i � x�i � ��

�

else �

x�r � x�r � �b � x�

x�i � sqrt	�discr
 � x�

x�i � �x�i�

�

z� � make!rect	x�r� x�i
�

z� � make!rect	x�r� x�i
�

�zp� � z��

�zp� � z��

�

Figure ������ Code for findroots	
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�� File� roots�c � continued ��

�� Function evaluates a quadratic equation with x equal to

the unknown variable�

��

void eval!quad	double a� double b� double c� rect x


� rect w � ��� ���

w � multc	force!rect	a
� x
� �� a � x ��

w � addc	w� force!rect	b

� �� a � x � b ��

w � multc	w� x
� �� a � x � x � b � x ��

w � addc	w� force!rect	c

� �� a � x � x � b � x � c ��

if 	fabs	w�real
 � �������� �� fabs	w�imag
 � ��������


printf	�The value is verified as a root of the equation�n�
�

else

printf	�The value is not a root of the equation�n�
�

�

Figure ������ Code for eval quad	


z� � ��������� � j � ��������

The value is verified as a root of the equation


D

������ Impedance of Electrical Circuits

Another important application of complex numbers is in computing impedances of electrical cir�
cuits� The basic components of such circuits are resistors� inductors� and capacitors as shown in
Figure ������ These devices can be connected in series or parallel to make more complex circuits
as shown in Figure ����
 where each component has an impedance� Z� In general� the impedance
is modeled as a complex quantity depending on their value and the value of the angular frequency�
�� in radians per second� of the electrical signal for which the impedance is to be computed� The
impedance of a resistor of R ohms is simply R� that of an inductor of L henrys is j � � � L� and
that of a capacitor of C farads is �j

���C� �
The impedance of a series or a parallel combination of sub�circuits is de
ned in terms of the

individual impedances of the sub�circuits� The impedance of a series combination of impedances�
Z� and Z� is the sum of the individual impedances� i�e� Z� � Z	� The impedance of a parallel
combination of impedances Z� and Z� is the reciprocal of the reciprocal sum of the individual
impedances�

�
�
Z� � �

Z�

Let us 
rst write a set of circuit utility functions to determine�

� the impedance of a basic component�

� the impedance of a series combination�
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Figure ������ Basic Electrical Circuit Components
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Figure ����
� Series and Parallel Combinations
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� and the impedance of a parallel combination�

We will use the complex data type� rect� as de
ned in compdef�h as well as the functions de
ned
in computil�c�

The function comp imped	
 determines the impedance of a basic component whose element
type �a character� and value are passed together with the value of the angular frequency � �we
will call w�� The code is shown in Figure ������ The only point to note here is that if w � C is
zero� the impedance is in
nite� It is not possible to handle an in
nite value in computers� so some
garbage value is returned� The calling program must handle a zero value of w � C as a special case�
Next� we implement the functions that compute the series and parallel combination of impedances
shown in Figure ���	�� The function series	
merely returns the sum of the two impedances� The
function parallel	
 uses polar coordinates to compute the reciprocals of impedances� It is much
easier to compute the reciprocal of a complex number in polar coordinates than in rectangular
coordinates� whereas complex numbers are easier to sum in rectangular coordinates� Conversion
routines are used to convert polar to rectangular� and vice versa�

�
We are now ready to implement a program to compute the impedance of an electrical circuit�

Let us assume a circuit which is a series combination of two sub�circuits as shown in Figure ���	��
The 
rst sub�circuit is a series combination of resistor R� and inductor L� The second sub�circuit
is a parallel combination of resistor R� and capacitor C� Figure ���		 shows the program to 
nd
the impedances of this circuit for di�erent sets of values of R�� R�� L� C� and �� The program
reads a set of values for R�� R�� L� C� and �� It calls series	
 to compute the impedance z�

of R� and L in series� If �C is zero� the impedance of the capacitor is in
nite� so the impedance
of the parallel combination� z�� is just the impedance of R�� Otherwise� parallel	
 is called to
compute the impedance z� of R� and C in parallel� In all cases� comp imped	
 is used to compute
the impedances of the basic components and series	
 is called to compute the impedance of z�
and z� in series� The values of these impedances are printed by print rect	
� A sample run is
shown below�

���Impedance of Electrical Circuits���

Ckt� a series combination of�

R� and L in series� and

R� and C in parallel�

Type values of R� R� L C W� EOF to quit

� � � � �

Impedance of series branch z� � �������� � j � ��������

Impedance of parallel branch z� � �������� � j � ���     

Overall impedance z � �������� � j � ��������

�� ����� ���� �������� �����

Impedance of series branch z� � ��������� � j � ����������

Impedance of parallel branch z� � �������� � j �   �  ����

Overall impedance z � ��������� � j � ����   �


D

The second circuit values represent a circuit near resonance� Its impedance is almost purely
resistive� since the imaginary part is close to zero�
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�� File� cktutil�h ��

rect comp!imped	int component� double value� double w
�

�� File� cktutil�c ��

�include �stdio�h�

�include �math�h�

�include �compdef�h�

�include �computil�h�

�include �cktutil�h�

�� Returns the impedance for each of the components R� L� C� ��

rect comp!imped	char component� double value� double w


� rect z�

double x�

switch	component
 �

case $r$� z � force!rect	value
� �� impedance is R ��

break�

case $l$� z�real � ��

z�imag � w � value� �� impedance is j � w � L ��

break�

case $c$� z�real � ��

x � w � value� �� x � w � C ��

�� if x is non�zero� impedance is �j�	w�C
 ��

if 	x


z�imag � � � � x�

else � �� else� impedance is infinite ��

break� �� handle separately ��

�

return z�

�

Figure ������ Code for comp imped	
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�� File� cktutil�h � continued ��

rect series	rect z�� rect z�
�

rect parallel	rect z�� rect z�
�

�� File� cktutil�c � continued ��

�� Returns the impedance of a series combination of impedances

z� and z�� sum of z� and z��

��

rect series	rect z�� rect z�


�

return addc	z�� z�
�

�

�� Returns the impedance of a parallel combination of impedances

z� and z�� reciprocal of the sum of � � z� and � � z��

��

rect parallel	rect z�� rect z�


� polar p�� p�� p�

rect z�

p� � rect!to!polar	z�
�

p��r � � � p��r� �� reciprocal of z� ��

p��theta � �p��theta�

p� � rect!to!polar	z�
�

p��r � � � p��r� �� reciprocal of z� ��

p��theta � �p��theta�

z � addc	polar!to!rect	p�
� polar!to!rect	p�

� �� sum reciprocals

��

p � rect!to!polar	z
�

p�r � � � p�r� �� take reciprocal of the sum ��

p�theta � �p�theta�

z � polar!to!rect	p
� �� convert to rect� ��

return z� �� return in rect form ��

�

Figure ���	�� Code for series	
 and parallel	
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Figure ���	�� An Example Circuit

���� Integrals

Another common operation that arises in engineering and scienti
c computing is integration�
While software application packages exist to perform symbolic integration� some functions do not
lend themselves to such a �closed form� method� A common computing method for approximating
the value of an integral in numeric integration� In this section we will develop a small program
implementing Simpson�s Rule for numeric integration�

The integral of a function between speci
ed limits gives the area under the function curve as
shown in Figure ���	�� Numeric methods can approximate the area under the curve by summing
approximate sub�areas under linearized parts of the function at uniformly sampled points �Figure
���	��� The smaller the sampling interval� h� the greater the precision of the computed integral�
An algorithm to evaluate such an integral may be written in terms of the value of the function at
sample points between the two limits� For example� assume the limits of integration for function�
f�x� are x � a and x � b� Then� the function values between the two limits at intervals of h are�

f�a�� f�a � h�� f�a � 	h�� � � � � f�b�

The total number of samples is
�b� a�

h

There are many methods to approximate the value of an integral in terms of these sample values�
Simpson�s Rule gives a fairly accurate integral of function f�x� between speci
ed limits a and b�

Integralvalue �
h

�
�y� � �y� � 	y� � �y� � 	y� � � � � � yn�

where� yk � f�a�kh� for k � �� �� 	� ���� n� h is the sampling interval� and n � b�a

h
with h adjusted

so that n is an even integer� Except for the multiplier h

� � the above sum is called the Simpson

sum� Observe that in the Simpson sum� sample values of the function evaluated at odd k� i�e�
y�� y�� y�� � � �� are multiplied by �� and sample values at even values of k� except for y� and yn� are
multiplied by 	� Finally� sample values y� and yn are added without a multiplier�

We will now slightly modify the concept of a generic sum from Chapter �� to implement a func�
tion that numerically evaluates an integral of a speci
ed function between two limits� i�e� modify
the generic function� sum	
� into a generic Simpson sum function� Since integral computation
requires real numbers� we use type double for all our computation� The parameters to simpsum
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�� File� imped�c

Other Source Files� computil�c� cktutil�c

Header Files� compdef�h� computil�h� cktutil�h

This program finds the impedance of an electrical circuit for

different values of the components and the frequency� The

circuit consists of a series of two sub�circuits� a series

combination of a resistor R� and an inductor L� and a parallel

combination of a resistor R� and a capacitor C� The values of

these components are specified by the user together with the

angular frequency w in radians per second� The impedance is found

for each user specified set of values until EOF�

��

�include �stdio�h�

�include �math�h�

�include �compdef�h�

�include �computil�h�

�include �cktutil�h�

main	


� rect z� z�� z��

double r�� r�� l� c� w�

printf	����Impedance of Electrical Circuits����n�n�
�

printf	�Ckt� A series combination of��n�
�

printf	� R� and L in series� and�n�
�

printf	� R� and C in parallel��n�
�

printf	�Type values of R� R� L C w� EOF to quit�n�
�

while 	scanf	��lf �lf �lf �lf �lf��

�r�� �r�� �l� �c� �w
 �� EOF
 �

z� � series	comp!imped	$r$� r�� w
� comp!imped	$l$� l� w

�

if 	w �� � %% c �� �


z� � comp!imped	$r$� r�� w
�

else

z� � parallel	comp!imped	$r$� r�� w
�

comp!imped	$c$� c� w

�

z � series	z�� z�
�

printf	�Impedance of series branch z� � �
�

print!rect	z�
�

printf	�Impedance of parallel branch z� � �
�

print!rect	z�
�

printf	�Overall impedance z � �
�

print!rect	z
�

�

�

Figure ���		� Driver program for an example circuit
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Figure ���	�� Function Sampling at Intervals of h
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�� File� simputil�h ��

double simpsum	double 	�fp
	
� double a� double 	�up
	
�

double step� double b
�

�� File� simputil�c ��

�include �stdio�h�

�include �simputil�h�

�� Returns the Simpson sum of �fp from a to b� ��

double simpsum	double 	�fp
	
� double a� double 	�up
	
�

double step� double b


� double i� cumsum � ��

int m�

for 	i � a� m � �� i � b� m��� i � 	�up
	i� step

 �

if 	m �� �


cumsum �� 	�fp
	i
�

else if 	m � �


cumsum �� � � 	�fp
	i
�

else

cumsum �� � � 	�fp
	i
�

�

cumsum �� 	�fp
	b
�

return cumsum�

�

Figure ���	�� Code to compute the Simpson sum

are the function pointer� fp� a lower limit� a� an update function pointer� up� a sampling interval�
step� and an upper limit� b� The code is shown in Figure ���	��

The integer variable� m represents the sample number� If m is zero� the function sample is
added to the cumulative sum� if it is odd� the sample value times � is added to the cumulative
sum� otherwise� sample value times 	 is added� Finally� the sample value yn at b is added and
the resulting Simpson sum is returned� It is easy now to implement the function integral	


to compute the integral of a function between limits a and b� It merely gets the Simpson sum�
multiplies by step�� and returns it as seen in Figure ���	� The update function incr	
 merely
returns the value of its 
rst argument increased by the value of the second argument� step� This
function is included in sumutil�c together with other useful functions� self	
� square	
� and
cube	
 shown in Figure ���	��

Finally� we write a simple driver that computes integrals of several functions using integral	


shown in Figure ���	
� The program 
rst reads the sampling interval� h� then repeatedly reads
the integration limits until EOF� For each set of limits� it calculates the number of samples� n� for
the speci
ed h� Since the Simpson sum requires an even number of samples� n is increased by one
if it is odd� and the sampling interval h is adjusted to correspond to the even value of n� Then�
the program computes the integral by calling integral	
 for three di�erent functions� a straight
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�� File� simputil�h � continued ��

double integral	double 	�fp
	
� double a� double b� double step
�

�� File� simputil�c � continued ��

�� Computes integral of a function �fp from a to b in sample

steps of step�

��

double integral	double 	�fp
	
� double a� double b� double step


� double r� incr	
�

r � simpsum	fp� a� incr� step� b
�

return r � step � ��

�

Figure ���	�� Code for integral	


line f�x� � x� a square� f�x� � x�� and a cube� f�x� � x�� The values of integrals are printed�
The program is in three source 
les� which must be compiled and linked� integr�c� sumutil�c�
and simputil�c� Here are two sample sessions with di�erent sampling intervals�

���Integration by Simpson$s Rule���

Integrals of x� square of x� and cube of x

Sampling interval for integration� ���

Type lower and upper limits� EOF to quit

� �

Integral of st� line � �������#

Integral of square � ��������

Integral of cubic � �������#


D

���Integration by Simpson$s Rule���

Integrals of x� square of x� and cube of x

Sampling interval for integration� ����

Type lower and upper limits� EOF to quit

� �

Integral of st� line � ��������

Integral of square � ��������

Integral of cubic � ��������


D

Remember� the smaller the sampling interval� the greater the accuracy of the computed integral�
The 
rst session speci
es a fairly large sampling interval of ��� and the results are not very accurate�
The exact answers for the integrals are ���� ������� and ��	�� The second session speci
es a
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�� File� sumutil�h � continued ��

double self	double x
�

double square	double x
�

double cube	double x
�

double incr	double x� double step
�

�� File� sumutil�c � continued ��

�� Returns x� ��

double self	double x


�

return x�

�

�� Returns square of x� ��

double square	double x


�

return x � x�

�

�� Returns cube of x� ��

double cube	double x


�

return x � x � x�

�

�� Returns x incremented by step� ��

double incr	double x� double step


�

return x � step�

�

Figure ���	�� Code for self	
� cube	
� and incr	




��� CHAPTER ��� ENGINEERING PROGRAMMING EXAMPLES

�� File� integr�c

Other Source Files� sumutil�c� simputil�c

Header Files� sumutil�h� simputil�h

This program computes definite integrals of several functions

between specified limits� Parameters of integral	
 are� a

function pointer� limits� and number of samples� It returns

the integral of that function� Integrals of straight line�

square� and a cubic are printed out for specified limits�

Simpson$s Rule is used to compute integral of a function f	x


between limits a and b as follows�

I � 	h � �
 � 	y� � �y� � �y� � �y� � �y� ����� yn
�

where� yk � f	a � kh
� and h � 	b � a
 � n for some even integer

n� Except for the multiplier h��� the above sum is called the

Simpson sum�

��

�include �stdio�h�

�include �sumutil�h�

�include �simputil�h�

main	


� double r� a� b� h� self	
� square	
� cube	
�

int n�

printf	����Integration by Simpson$s Rule����n�n�
�

printf	�Integrals of x� square of x� and cube of x�n�
�

printf	�Sampling interval for integration� �
�

scanf	��lf�� �h
�

printf	�Type lower and upper limits� EOF to quit�n�
�

while 	scanf	��lf �lf�� �a� �b
 �� EOF
 �

n � 	b � a
 � h�

if 	n � �
 �

n���

h � 	b � a
 � n�

�

r � integral	self� a� b� h
�

printf	�Integral of st� line � �f�n�� r
�

r � integral	square� a� b� h
�

printf	�Integral of square � �f�n�� r
�

r � integral	cube� a� b� h
�

printf	�Integral of cubic � �f�n�� r
�

�

�

Figure ���	
� Driver for Numeric Integration Program
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somewhat better sampling interval ����� and the results are quite accurate� A smaller sampling
interval would be even better� but would require more computation time� A compromise between
accuracy and speed is required in most numeric computations�

���� Summary

In this chapter we have shown how we can use the features of the C language as well as the pro�
gram design techniques we have discussed throughout this text to implement programs for several
common engineering and scienti
c applications� In general� we have done this by developing a set
of utility functions to use as a toolbag for writing the application� Our treatment of engineering
and scienti
c computing has not been� by any means� comprehensive� References� such as ��� be�
low� can be a source of algorithms for many additional applications� However� with your current
knowledge of C you can now develop programs from these algorithms to solve your problems�

E ho omaika i  oukou�
�Good luck��
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���� Problems

�� Write a menu driven program that allows the user to specify a matrix operation� add�
subtract� multiply�

	� Write a simple calculator program that performs complex number arithmetic� The input
should be an operand� followed by an operator� followed by an operand� The output should
be the result of applying the operator to operands�

�� Repeat 	� but allow the user to continue entering operators and operands in sequence� The
user may also request that a value should be saved for later use�

�� Evaluate a polynomial P �z� with speci
ed coe�cients for a complex value of the variable�
The highest degree of the polynomial is ��� The user must enter coe�cient and exponent
pairs for the polynomial� and specify the value of the variable for which the polynomial is
to be evaluated�

�� Consider a rational function of a variable s�

P �s�

Q�s�

where P �s� and Q�s� are polynomials in a variable� s� with real coe�cients� Evaluate the
function for a value of s � j�� Evaluate the function for di�erent values of s� Plot the
magnitude and angle of the values�


