15.1. MATRICES 563

/* File: matdef.h */
#define MAX 10

/* File: matutil.h */

#include "matdef.h"

int readmatrix(double x[][MAX], int r, int c);
void printmatrix(double x[][MAX], int r, int c);
int readvector(double x[], int n);

void printvector(double x[], int n);

/* File: matutil.c */

#include <stdio.h>

#include "matdef.h"

#include "matutil.h"

/* Reads a matrix x with r rows and ¢ columns. MAX
provides the maximum column range for the array.

*/

int readmatrix(double x[][MAX], int r, int c)

{ int i, j;
double z, sum = 0;

printf("Matrix data entry:\n");
for (1 =0; 1 < r; i++) { /* for each row of matrix */
printf ("Type a row of %d numbers\n", c);

for(j = 0; j < c; j+H){ /* read c elements of the row */
scanf ("%1f", &z);
x[i1[j] = z;
sum += z;

by

b

return sum;

/% Prints a matrix with r rows and ¢ columns */
void printmatrix(double x[][MAX], int r, int c)
{ int i, j;

printf("Matrix is:\n");
for (1 =0; 1 < r; i++) { /* for each row */

for(j = 0; j < c; j++) /* print the row */
printf("%f ",x[i1[j1);

printf("\n");

564

CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

/% Reads a vector of size n. Function returns the sum
of input values.

*/
int readvector(double x[], int n)
{ int 1i;
double sum = 0;
printf ("Type %d numbers, <all zeros to quit>: ", n);
for (1 = 0; 1 < n; i++) {
scanf ("41f", x + 1)
sum += x[i];
t
return sum;
t

/% Prints a vector of size n. */
void printvector(double x[], int n)
{ int 1i;

printf("Vector is:\n");

for (1 = 0; 1 < n; 1i++)
printf("%f\n", x[i]);

Figure 15.1: Matrix and Vector I/O Functions

15.1. MATRICES 565

/* File: matutil.h - continued */
void mapvector(double al[] [MAX], double x[], double y[],
int r, int c);

/* File: matutil.c - continued */
/* Computes a * x ====> y, where al[][] has r rows and ¢ columns. */
void mapvector(double al[] [MAX], double x[], double y[],
int r, int c)
{ int i, j;

for (1 = 0; 1 < r; i++){
y[i]l = 0;

n -

for (j = 0; j < c; j++)
y[i]l += alil[j] * x[j];

Figure 15.2: Code for mapvector()

by mapvector() into a new vector which is printed. The function getrc() shown in Figure 15.4
and is included in file matutil.c. The source files mat.c and matutil.c are compiled and linked
and tested producing the following sample session:

***Matrices and Vector Transformations**x*

Rows: 2
Columns: 3

Matrix data entry:

Type a row of 3 numbers
123

Type a row of 3 numbers

456

Matrix is:
1.000000 2.000000 3.000000
4.000000 5.000000 6.000000

Type 3 numbers, <all zeros to quit>: [23
Transformed Vector is:

14.000000

32.000000

266 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

/* File: mat.c
Other Source Files: matutil.c
Header Files: matutil.h
This program reads a matrix. It then repeatedly reads vectors.
Each vector is transformed by the matrix and printed out.

*/

#include <stdio.h>
#include "matdef.h"
#include "matutil.h"

main()

{ double a[MAX] [MAX];
double x[MAX], y[MAX];
int r, c;

printf ("***Matrices and Vector Transformations***\n\n'");
getrc(&r, &c);

readmatrix(a, r, c);

printmatrix(a, r, c);

while (readvector(x, c)) {
mapvector(a, x, y, T, c);
printf("Transformed "); /* Prefix to printvector() mesg */
printvector(y, r);

Figure 15.3: Driver to read and transform vectors

15.1.

MATRICES 567

/% File: matutil.h - continued */

void getrc(int * rp, int * cp);

/* File: matutil.c - continued */
/* Gets the number of rows and columns for a matrix. rp point to
rows and cp points to columns.

*/
void getrc(int * rp, int * cp)
{
printf ("Rows: ");
scanf ("%4d", rp);
printf("Columns: ");
scanf ("%4d", cp);
t

Figure 15.4: Code for getrc()

Type 3 numbers, <all zeros to quit>: 321
Transformed Vector is:

10.000000

28.000000

Type 3 numbers, <all zeros to quit>: 2.534.5
Transformed Vector is:

22.000000

52.000000

Type 3 numbers, <all zeros to quit>: 000

15.1.2 Matrix Operations: Sums and Products

Other common manipulations involving matrices require addition of two matrices, multiplication

of two matrices, and inversion of matrices. In this section, we will implement matrix addition and

matrix multiplication algorithms. Addition of two matrices may arise when two sets of equations

relate the same set of variables. For example, consider the matrix equations:

Ax X = Y1
BxX = Y2

Corresponding equations of the two sets can be added together to obtain a combined single set:

CxX=Y

268 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

/* File: matutil.h - continued */
void matsum(double c[][MAX], double al[][MAX],
double b[][MAX], int rows, int cols);

/* File: matutil.c - continued */
/* Adds matrix a to matrix b to generate a matrix c. Parameters
r and c specify the rows and columns.
*/
void matsum(double c[][MAX], double al[][MAX],
double b[][MAX], int rows, int cols)
{ int i, j;

for (1 = 0; 1 < rows; 1++)
for (j = 0; j < cols; j++)
c[il[j] = alil[j] + vlil[;];

Figure 15.5: Code to add rectangular matrices

where, in matrix terms,

¢ = A+4+B

Y = Y14Y2

Vectors are special cases of rectangular matrices having n rows and 1 column. We will therefore
implement a single function that sums two rectangular matrices. The sum of matrices A and B
generates a new matrix, say C. If the elements of matrix A are a[i][j], and those of B are
b[i] [j], then the sum matrix, C' with elements c[1] [j], is determined as follows:

clil[j] = aliJ[j] + v[il[j]

The implementation of matrix addition is easy, and the code is shown in Figure 15.5.
Multiplication of two matrices A and B results when combining two transformations, i.e.
where a vector being transformed by a matrix A is itself the result of a transformation by a

matrix B3. Consider the following two sets of equations:

Ax/Z =Y

15.1. MATRICES 569

Since, by the second equation, Z equals B X X, we can substitute B X X for Z in the first

equation:

AxBxX=Y

Or, the combined equation results in:

CxX=Y

The product of matrices A and B generates a matrix C'. If the number of rows and columns of
A are given by r1 and cl, and those of B are given by r2 and ¢2, then, the number of elements
of Z represents the number of columns of A and the number of rows of B, i.e. ¢l = r2. Also, C'
must have the same number of rows as A and the same number of columns as B. That is, the
number of rows and columns of C' must be r1 and ¢2. It turns out that each c[i]1[j] is a result
of a scalar product of row ¢ of matrix A and column j of matrix B. Let the :** row of A and the

gt column of B be:
ali][0] alil[1] ... alilletl - 1]
blo][3] ®vl11[j] ... ©blr2 - 11[j]

then, the scalar product, c[i] [j], is given by:
a[il[0] * b[0]1[j] + alill[1] * b[11[j]1 + ... + alillc1-1] * b[r2-1][j]

With this algorithm, the sum is easily implemented as a cumulative sum, initialized to zero. Each
pass through the loop adds one product term, a[i] [k] * b[k][j], for £ from zero through ¢1—1.
That is, the following loop computes c[1] [j]:

c[i][j] = 0;
for (k = 0; k < c1; k++)
cl[il[j] += alil[k] * blk][j];

Such a loop is repeated for all appropriate ¢ rows and j columns. The code for matrix product is
shown in Figure 15.6.

We can now write a simple example that uses the matrix functions defined above as shown in
Figure 15.7. The program adds and multiplies matrices. To keep the program simple, we assume
square matrices. The program first reads in the size of square matrices, and then reads in the
two matrices. These matrices are added and multiplied, and the resultant matrices are printed.
A sample session is shown below:

kkSquare Matrices - Sums and Productsx*
Size of square matrices: 2

Matrix data entry:

Type a row of 2 numbers
23

Type a row of 2 numbers

34

570

/%

void

/%
/%

void

CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

File: matutil.h - continued */
matprod(double c[][MAX], double al][MAX], double b[][MAX],
int rl, int cl, int r2, int c2);

File: matutil.c - continued */

Matrix multiplication of matrix a (r1 rows and cl1 columns)

and matrix b (r2 rows and c2 columns). Result is matrix c with
rl rows and c2 columns.

matprod(double c[][MAX], double al][MAX], double b[][MAX],
int rl, int cl, int r2, int c2)
int 1, j, k;

if (c1 '= r2) {
printf ("Error - Columns of matrix A do not match rows of B\n");
return;

for (1 = 0; 1 < rl; i++)
for (j = 0; j < c2; j++) {
c[i][j] = 0;

for (k = 0; k < cl1; k++)
c[i][j] += alil[k] * blk][j];

Figure 15.6: Code for matrix product

15.1. MATRICES 571

/* File: matops.c
Other Source Files: matutil.c
Header Files: matutil.h
This program adds and multiplies two square matrices.
The matrices are read into two dimensional arrays.
*/
#include <stdio.h>
#include '"matdef.h"
#include '"matutil.h"

main()
{ double a[MAX] [MAX], b[MAX][MAX], c[MAX][MAX];
int n;

printf(u***Square Matrices - Sums and Products***\n\n'");
printf("Size of square matrices: ");
scanf ("%d", &n);

readmatrix(a, n, n);
readmatrix(b, n, n);
matsum(c, a, b, n, n);

printf("Sum "); /* Prefix to msg in printmatrizx() */
printmatrix(c, n, n);

matprod(c, a, b, n, n, n, n);

printf ("Product "); /* Prefix to msg in printmatrizx() */
printmatrix(c, n, n);

Figure 15.7: Driver to test matrix operations

572 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

Matrix data entry:

Type a row of 2 numbers
45

Type a row of 2 numbers

67

Sum Matrix is:
6.000000 8.000000
9.000000 11.000000

Product Matrix is:
26.000000 31.000000
36.000000 43.000000

Another important matrix operation is the inversion of a square matrix. An inverse matrix

has the property:
Al xA=A"xA=1T

where A1 is the inverse matriz and I is a unit matriz with unit diagonal elements and zero

elements elsewhere. The unit matrix has the property:

IxX=XxI=X
IfAxX =Y, it follows that

Al x Ax X = A 'xYy

X = Alxy

Thus, given the inverse matrix, the solution to the matrix equation for any Y is easily obtained.

Inversion of a matrix is somewhat more complex. An inverse of a matrix can be obtained
by the Gauss-Jordan method — a modified version of the Gauss elimination method discussed
in Chapter 9. A good reference [1], for matrix computational methods as well as other numeric
methods, is given at the end of this chapter.

15.2 Complex Numbers

Complex numbers are encountered in many mathematical applications. In this section, we will
first review complex numbers and operations involving complex numbers. We will then repre-
sent complex numbers using structure types and implement many of the basic complex number
operations.

The squares of a real number, either positive or negative, is a positive number. Numbers whose
squares are negative cannot be real numbers; they are, therefore, called imaginary numbers. Thus,

15.2. COMPLEX NUMBERS 573

imag
+ve
2=+ Jy
Y b »
1
1
1
1
:
-ve 0 X real
+ve
-ve

Figure 15.8: Complex Numbers in Rectangular Coordinates

imaginary numbers are the square roots of negative numbers. For example, consider:
z =/l

Here |x| is the absolute value of x, and thus z is a square root of a negative number, i.e. an
imaginary number. Imaginary numbers are written in a normalized manner as follows:

z = y/—1-]z|
= V=1l
J-y

where, 5 = \/—1, and y = \/m Square root of -1 is represented by the special symbol, ¢ in
mathematics or j in Electrical Engineering. Thus, an imaginary number is represented by j times
a real number y. A complexr number is a number that is sums of both a real and an imaginary
number.
czatjy

Both & and y are real numbers, and z is a complex number. Either of the real numbers « or y can,
of course, be zero; in which case, the complex number reduces to either a real or an imaginary
number. The number x is called the real part of z, and y is called the imaginary part. Remember
that both the real part, x, and the imaginary part, y, are real numbers. It is j that is an imaginary
number, not y.

Complex numbers can be visualized geometrically as points on a two dimensional plane with
rectangular axes, real and imag. Then, the real part of a number is the projection of the point
onto the real axis, and the imaginary part of the number is the projection onto the imaginary axis
imag (see Figure 15.8. For these reasons, the complex number representation as a sum of real and
imaginary parts is called representation in rectangular coordinates.

Addition, subtraction, multiplication, and division operators for complex numbers are defined
in terms of the same operator symbols as for real numbers, viz. +, -, *, /. The sum of two

574 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

complex numbers is simply the sum of their real parts plus j times the sum of their imaginary
parts. Thus, if

zl = 2145yl

22 x2+7-y2

then the sum of z1 and z2 is given by:
21+ 22=(xl4+22)+ 7 (yl 4+ y2)

The product of z1 and z2 is obtained by multiplying the two numbers, replacing j - 7 by —1,
and collecting the real terms and the imaginary terms. Thus,

zl%22 = (2l +7-yl) - (2247-y2)
= (¢l 22—yl -y2)+7-(xl-y2+a2-yl).
Division of two complex numbers is a little more involved. First, we define the complex conju-
gate, z*, of a number, z = x + j - y, as one with the same real part, x, but whose imaginary part

is —y. Thus, the complex conjugate of z is:

*

c=zjoy
Observe that the product of z and z* is real:
227 = (e-xty-y)+i(ey—x-y)
= z-rx+y-y.

Now, we can divide two complex numbers:
2zl al+4j-yl
22 a2 +7-y2
To separate the result into real and imaginary parts, we first make the denominator real by
multiplying both the numerator and the denominator by z2*.
z1 z1l - 227

22 22 22*
(l+j-yl)-(x2—j-y2)
222+ y2-y2

xl-22+yl-y2 . —xl-y2-22-yl
222+ y2-y2]'*:1;2-:1;2—|—y2-y2

With this description of complex numbers and operations on them, we would like to develop
programs that can work with them. Complex number is not a native data type in C, but we would
like to represent complex numbers in a program as if it were. We will define an abstract data type,

complex, using typedef and define functions to serve as operators on complex numbers.

We will represent complex numbers as ordered pairs of real and imaginary parts, (using rect-
angular form defined above), and implement the ordered pairs as structures. We will use typedef
to define a data type, rect, for this structure. (We choose the name rect because complex data
type with an identical structure is already defined in math.h. We can, of course, use the complex
type defined in math.h, but we define a rect type to illustrate the use of typedef). Figure 15.9
shows this definition and the functions for addition and multiplication of complex numbers. We
use type double in the structure rect for greater precision in computation. In a similar manner,
it is easy to write the remaining functions for subtraction and division of two complex numbers.
Implementation of these functions is left as an exercise.

15.2. COMPLEX NUMBERS

/* File: compdef.h */
struct rect {
double real;
double imag;

s

typedef struct rect rect;

/* File: computil.h */
rect addc(rect zl, rect z2);

rect multc(rect z1l, rect z2);

/* File: computil.c */
#include <stdio.h>

#include <math.h> /* math function protos:

#include '"compdef.h"
#include "computil.h"

sqrt (), atan(), etc.

/* Returns a sum of two complex numbers - rect form. */

rect addc(rect zl, rect z2)
{ rect z;

z.real zl.real + z2.real;
z.imag = zl.imag + z2.imag;

return z;

/* Returns a product of two complex numbers - rect form. */

rect multc(rect z1, rect z2)
{ rect z;

z.real = zl.real * z2.real - zl.imag * z2.imag;
z.imag = zl.real * z2.imag + zl.imag * z2.real;

return z;

Figure 15.9: Complex number utility functions

575

576 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

imag
+ve
Z
y boooo_____
r :
0 :
-ve 0 X real
+ve
-ve

Figure 15.10: Complex Numbers in Polar Coordinates

15.2.1 Complex Numbers and Vectors

It is also possible to represent a point on a two dimensional plane in terms of polar coordinates.
Polar coordinates are given in terms of:

1. the length, r, of the (directional) line from the origin to the point, and

2. the counterclockwise angle, #, that the line makes with the reference axis, namely the positive
horizontal axis.

The directional line of length r at an angle § with respect to the reference axis is called a vector
(See Figure 15.10). The projection of the vector onto the real axis is r - cos(8), and the projection
onto the imaginary axis is r - sin(#). Thus, a complex number, represented by the pair (r,6) in
polar coordinates, can be written in rectangular coordinates as:
z = r-cos(f)+7-r-sin(f)
= r+jy

Thus, the real and imaginary parts, and ¥, in terms of r and 6 are:

r = r-cos(f)
y = r-sin(d)
Since,
exp(y - 0) = cos(f) + j - sin(9)

z can also be written as:
z=r-exp(y-0)

As we shall soon see, this exponential form is convenient for multiplication and division.

15.2. COMPLEX NUMBERS ST

Given rectangular coordinates x and y, we can determine r and 8 as follows. We know:

Py o=
y - tan(9)
x

SO

Y
0 = arctan(x)
Observe that the length, r, is the square root of z - z*. The length r is called the magnitude of the
vector, and the angle 8 is called the angle or phase angle of the vector.

As we have seen, addition and subtraction of complex numbers is easy to perform in rectangular
coordinates. On the other hand, multiplication and division of two complex numbers in rectangular
coordinates is not so easy. Conversely, it is easy to perform multiplication and division in polar
coordinates. Given that two numbers are:

pl = rlxexp(y-01)
p2 = r2xexp(y-02)

It is easy to see that:

pl-p2 = rl-r2-exp(y- (01 +62))
pl rl ,
— = —- (01 — 02)).
P el (01— 2)

From this analysis, we can implement complex numbers in polar coordinates as shown in
Figure 15.11 together with functions for multiplication and division in polar coordinates. It is
also important to be able to convert back and forth between rectangular and polar coordinates.
It is easy to write the necessary conversion routines to convert complex numbers in rectangular
coordinates to polar coordinates, and vice versa — they are shown in Figure 15.12. The function
polar_to_rect () is quite straight forward; rect_to_polar() uses the arc tangent function atan()
defined in the standard library. This function returns an angle in the range —# /2 to 7 /2, thus
we need to adjust the angle when the real part is zero and when it is negative. If the real part
is zero, the angle is 7/2 if the imaginary part is positive, and —x /2 if it is negative. Next, if the
real part is negative, the angle must be incremented by w. Since we use many standard library
trigonometric functions, the file math.h must be included at the head of computil.c and we must
link the math library when the program is compiled.

These functions provide a useful library for processing with complex numbers. Let us now
make use of them in two application programs.

15.2.2 Roots of Algebraic Equations

One such application where complex numbers occur is in finding roots of algebraic equations. A
linear algebraic equation of the form:

a*xx+b=10

578 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

/* File: compdef.h - continued */
struct polar {

double r;

double theta;
s

typedef struct polar polar;

/* File: computil.h - continued */
polar multp(polar pl, polar p2);
polar divp(polar pl, polar p2);

/* File: computil.c - continued */

/* Returns a product of complex numbers - polar form. */
polar multp(polar pl, polar p2)

{ polar p;

p.r =pl.r x p2.r;
p.theta = pl.theta + p2.theta;
return p;

/* Returns pl / p2 - polar form. */
polar divp(polar pl, polar p2)
{ polar p;

p.r = pl.r / p2.r;

p.theta = pl.theta - p2.theta;
return p;

Figure 15.11: Complex number utility functions in polar coordinates

15.2. COMPLEX NUMBERS 579

/* File: computil.h - continued */
rect polar_to_rect(polar p);
polar rect_to_polar(rect z);

/* File: computil.c - continued */

/* Returns the rect form of a number in polar form. */
rect polar_to_rect(polar p)

{ rect z;

z.real = p.r * cos(p.theta);
z.imag = p.r * sin(p.theta);
return z;

/* Returns the polar form of a number in rect form. */
#define PI 3.14159

polar rect_to_polar(rect z)

{ polar p;

p.r = sqrt(z.real * z.real + z.imag * z.imag);
if (z.real == 0)

p.theta = z.imag >= 0 7 PI / 2 : - PI / 2;
else

p.theta = atan(z.imag / z.real);
if (z.real < 0)

p.theta = PI + p.theta;
return p;

Figure 15.12: Conversion from polar to rect and rect to polar

5380 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

in one unknown variable, x, can be easy to solve depending on the values of the coefficients, a and
b. If a = 0 and b = 0, the equation is homogeneous and has no unique solution; any value for =
will make the equation true. If @ = 0 but b is non-zero, the equation has no solution; no value of
x will make it true. Otherwise, if a is non-zero, the solution for x is easily determined:

r=—b/a
A quadratic equation is a polynomial of second degree in = of the form:
a-2°4+b-x+c=0

If @ is zero, the equation reduces to a linear equation that is easy to solve. If a is non-zero, there
are two solutions:

—b4+ Vb —4-a-c
2-a
—b—Vb?*—4-a-c

2-q

zl =

2 =

The form of the solutions depends on the discriminant:
b —4-a-c

If the discriminant is positive, the square root is a real number and the roots, x1 and x2 are
both real numbers. If the discriminant is zero, the two roots are real and equal. Otherwise, if
the discriminant is negative, the square root is an imaginary number and the roots are complex
numbers:

l=—+4+3
¢ 2-a+‘7 2-a

b yJAra-c—1b?)
2=——79-

2-a 2-a

In fact, the two roots are complex conjugates: the real parts are the same, the imaginary parts
are negatives of each other. Complex roots of polynomials with real coefficients always occur in
complex conjugate pairs.

We will now implement a program that finds the roots of a quadratic equation, and then tests
each root by evaluating the quadratic polynomial for that value of the variable. If the value is a
root, the polynomial must evaluate to zero. When testing roots, we must be able to evaluate the
polynomial for all possible values of roots, including complex values. For consistency in testing, we
will represent all roots as complex numbers with real roots having a zero imaginary part. Therefore,
we will need a function to force a real number into a complex number, as well as a function to
make a complex number given its real and imaginary parts. These functions are shown in Figure
15.13, and are added to the file computil.c with their prototypes in computils.h. Finally, since
complex numbers are not a native data type in C, we will also need a function to print complex
numbers in the accepted form. If the number is real, it must print only the real part. If the
number is imaginary, it must print only j times the imaginary part. Otherwise, it must print a
complex number as a + j-bor a — j-b, depending on the sign of the imaginary part. The function
is also shown in Figure 15.13.

15.2. COMPLEX NUMBERS

rect
rect
void

/%
/%

rect

/%

rect

File: computil.h - continued */
make_rect(double x, double y);
force_rect(double x);
print_rect(rect z);

File: computil.c - continued */
Makes a complex number in rect form. */
make_rect(double x, double y)

rect z;
z.real = x;
z.1lmag = y;
return z;

Forces a real number to a complex number - rect form. */
force_rect(double x)

rect z;
z.real = x;
z.1imag = 0;
return z;

Prints a complex number in rect form. */
print_rect(rect z)

if (z.real == 0 && z.imag == 0) /* if number is zero */
printf("0"); /* print zero. */

if (z.real '= 0) /* print real part, if non-zero */
printf("4f ", z.real);

if (z.imag !'= 0) { /* print imag part, if non-zero */

if (z.imag > 0)
printf("+ j * 4f", z.imag);
else if (z.imag < 0)
printf("- j * 4f", -z.imag);
t
printf("\n");

Figure 15.13: Code for make rect () and force rect()

5381

582 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

With all of these utility functions completed, the program logic is now simple to implement.
It reads in the coefficients a, b, ¢ of the quadratic equation and uses the function findroots() to
find the roots of the quadratic. The function forces the roots to complex form and returns them
indirectly. The arguments of findroots() are the coefficients of the quadratic, and pointers to
the two roots. The program then uses the function eval_quad() to verify each root by evaluating
the quadratic polynomial at that value. The arguments of eval quad() are the coefficients of the
quadratic, and the value at which the quadratic is to be evaluated. The code for the driver is
shown in Figure 15.14. For each set of coefficients, main() checks if a is zero and b is non-zero,
in which case it prints that the equation is linear with root -c/b. Otherwise, if both a and b are
zero, it prints an invalid equation message, and in either case continues to read the next set of
coefficients. On the other hand, if a is non-zero, the driver calls findroots() to find the roots as
complex numbers and returns them by indirectly to z1 and z2. Each root is printed and verified
using eval quad(). The process continues until end of file.

We next implement the function findroots() shown in Figure 15.15. It computes the roots,
forces them to complex numbers and returns the values through the pointer parameters.

Finally, we write eval quad() to evaluate a quadratic polynomial at a given complex value of
the unknown variable. Since the value of the unknown, z is complex, we force all coefficients to
complex numbers before using our utility functions addc() and multc(). To reduce the number
of multiplications required to evaluate the polynomial we perform the expression

a-2°+b-2+c = a-x-ct+b-xt+ec
= (((a-2)+0b)-2)+ec

The function is shown in Figure 15.16 The complex variable, w, is initialized to zero and then
used for the cumulative complex sum of the polynomial. As we saw in Chapter 5, due to errors in
rounding and floating point number representation, our result may not be precisely zero. Therefore,
eval_quad() checks that w.real and w. imag are sufficiently close to zero using the library function
fabs () to verify the solution and print an appropriate message. A sample run of the program is
shown below:

***xRoots of Quadratic Equations**x*

Quadratic Equation: a * x * x + b * x + ¢ =0
Type coefficients a b c, EOF to quit

235

z1 = -0.750000 + j * 1.391941

The value is verified as a root of the equation
z2 = -0.750000 - j * 1.391941

The value is verified as a root of the equation
121

z1 = -1.000000

The value is verified as a root of the equation
z2 = -1.000000

The value is verified as a root of the equation
225

z1 = -0.500000 + j * 1.500000

The value is verified as a root of the equation

15.2. COMPLEX NUMBERS 383

/* File; roots.c
Other Source Files: computil.c
Header Files: compdef.h, computil.h
This program finds the roots of quadratic equations. For each
equation, the program verifies that the roots make the
quadratic polynomial evaluate to zero. All roots, including real
roots, are treated as complex roots.

*/

#include <stdio.h>

#include <math.h> /* needed in this file and in computil.c */
#include '"compdef.h" /* defines rect and polar types */

#include "computil.h" /* prototypes for functions in computil.c */

void eval_quad(double a, double b, double c, rect z);
void findroots(double a, double b, double c, rect *zpl, rect *zp2);

main()
{ rect zl, z2;
double a, b, c, x;

printf ("***Roots of Quadratic Equations***\n\n");
printf("Quadratic Equation: a * x * x + b * x + ¢ = 0\n");
printf ("Type coefficients a b ¢, EOF to quit\n");
while (scanf("%1f %1f %1f", &a, &b, &c) '= EOF) {
if (a == 0) {
if (b '=0) {

printf("Linear equation - root is %f\n", - ¢ / b);
continue;
t
else {
printf("Invalid equation\n");
continue;
t
t
else

findroots(a, b, c, &zl, &z2);
printf("zl = ");
print_rect(z1);
eval_quad(a, b, c, zl1);
printf("z2 = ");
print_rect(z2);
eval_quad(a, b, c, z2);

Figure 15.14: Code for quadratic solver driver

584 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

/* File; roots.c - continued */
/* Finds the roots of a quadratic equation. Roots are forced
to complex values and stored where zpl and zp2 point.

*/
void findroots(double a, double b, double c, rect *zpl, rect *zp2)
{ double discr, x, xl1lr, x2r, xl1i, x2i;
rect z1, z2;
X = 2 % a;
discr = b *x b - 4 % a *x c;
if (discr >= 0) {
xlr = -b / x + sqrt(discr) / x;
x2r = -b / x - sqrt(discr) / x;
x1i = x21 = 0;
}
else {
xlr = x2r = -b / x;
x1i = sqrt(-discr) / x;
x21 = -x11i;
}
z1 = make_rect(xlr, x11i);
z2 = make_rect(x2r, x21);
*zpl = z1;
*zp2 = z2;
}

Figure 15.15: Code for findroots()

15.2. COMPLEX NUMBERS 385

/* File; roots.c - continued */

/* Function evaluates a quadratic equation with x equal to
the unknown variable.

*/

void eval_quad(double a, double b, double c, rect x)

{ rect w = {0, 0};

w = multc(force_rect(a), x); /* a * x */

w = addc(w, force_rect(b)); /* a * x + b *x/

w = multc(w, x); /* a * Xx *x x +b * x %/

w = addc(w, force_rect(c)); /* a * Xx * x + b *xx + c *x/

if (fabs(w.real) < 0.000001 && fabs(w.imag) < 0.000001)

printf ("The value is verified as a root of the equation\n');
else

printf("The value is not a root of the equation\n");

Figure 15.16: Code for eval _quad()

z2 = -0.500000 - j * 1.500000
The value is verified as a root of the equation

"D

15.2.3 Impedance of Electrical Circuits

Another important application of complex numbers is in computing impedances of electrical cir-
cuits. The basic components of such circuits are resistors, inductors, and capacitors as shown in
Figure 15.17. These devices can be connected in series or parallel to make more complex circuits
as shown in Figure 15.18 where each component has an impedance, Z. In general, the impedance
is modeled as a complex quantity depending on their value and the value of the angular frequency,
w, in radians per second, of the electrical signal for which the impedance is to be computed. The
impedance of a resistor of R ohms is simply R, that of an inductor of L henrys is j-w - L, and
that of a capacitor of C'farads is Ui%ﬁ'

The impedance of a series or a parallel combination of sub-circuits is defined in terms of the
individual impedances of the sub-circuits. The impedance of a series combination of impedances,
Z1 and Z2 is the sum of the individual impedances, i.e. Z1 + Z2. The impedance of a parallel
combination of impedances Z1 and Z2 is the reciprocal of the reciprocal sum of the individual
impedances: '

7tz
Let us first write a set of circuit utility functions to determine:

e the impedance of a basic component,

e the impedance of a series combination,

586 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

Resistor Capacitor Inductor

Figure 15.17: Basic Electrical Circuit Components

Z1

Z1 72

72

Series Parallel

Figure 15.18: Series and Parallel Combinations

15.2. COMPLEX NUMBERS 387

e and the impedance of a parallel combination.

We will use the complex data type, rect, as defined in compdef .h as well as the functions defined
in computil.c.

The function comp_imped() determines the impedance of a basic component whose element
type (a character) and value are passed together with the value of the angular frequency w (we
will call w). The code is shown in Figure 15.19. The only point to note here is that if w * C is
zero, the impedance is infinite. It is not possible to handle an infinite value in computers, so some
garbage value is returned. The calling program must handle a zero value of w * C as a special case.
Next, we implement the functions that compute the series and parallel combination of impedances
shown in Figure 15.20. The function series() merely returns the sum of the two impedances. The
function parallel() uses polar coordinates to compute the reciprocals of impedances. It is much
easier to compute the reciprocal of a complex number in polar coordinates than in rectangular
coordinates; whereas complex numbers are easier to sum in rectangular coordinates. Conversion
routines are used to convert polar to rectangular, and vice versa.

*

We are now ready to implement a program to compute the impedance of an electrical circuit.
Let us assume a circuit which is a series combination of two sub-circuits as shown in Figure 15.21.
The first sub-circuit is a series combination of resistor R1 and inductor L. The second sub-circuit
is a parallel combination of resistor R2 and capacitor C. Figure 15.22 shows the program to find
the impedances of this circuit for different sets of values of R1, R2, L, C, and w. The program
reads a set of values for R1, R2, L, C, and w. It calls series() to compute the impedance z1
of R1 and L in series. If wC' is zero, the impedance of the capacitor is infinite; so the impedance
of the parallel combination, z2, is just the impedance of R2. Otherwise, parallel() is called to
compute the impedance z2 of R2 and C in parallel. In all cases, comp_imped () is used to compute
the impedances of the basic components and series() is called to compute the impedance of z1
and z2 in series. The values of these impedances are printed by print rect(). A sample run is
shown below:

*kkImpedance of Electrical Circuits***

Ckt: a series combination of:

R1 and L in series, and

R2 and C in parallel.

Type values of R1 R2 L C W, EOF to quit

11111

Impedance of series branch z1 = 1.000000 + j * 1.000000
Impedance of parallel branch z2 = 0.500000 - j * 0.499999
Overall impedance z = 1.500000 + j * 0.500001

10 10000 0.01 0.000001 10000

Impedance of series branch zl = 10.000000 + j * 100.000000
Impedance of parallel branch z2 = 1.000023 - j * 99.990005
Overall impedance z = 11.000023 + j * 0.009995

"D

The second circuit values represent a circuit near resonance. Its impedance is almost purely
resistive, since the imaginary part is close to zero.

588

CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

/% File: cktutil.h */
rect comp_imped(int component, double value, double W)

/% File: cktutil.c */

#include
#include
#include
#include
#include

<stdio.h>
<math.h>
"compdef.h"
"computil.h"
"cktutil.h"

/* Returns the impedance for each of the components R, L, C. */
rect comp_imped(char component, double value, double W)
{ rect z;

double x;

switch(component) {

case ’'r’: z = force_rect(value); /* impedance is R */
break;
case ’1’: z.real = 0;
z.imag = w * value; /* impedance is j * w * L %/
break;
case ’c’: z.real = 0;
x = w * value; /¥ x = w *x C x/
/* if x is non-zero, impedance is -j/(w*C) */
if (%)
z.imag = - 1 / x;
else ; /* else, impedance is infinite */
break; /* handle separately */
t
return z;

Figure 15.19: Code for comp_imped ()

15.2. COMPLEX NUMBERS

rect
rect

/%

rect

File: cktutil.h - continued */
series(rect zl1l, rect z2);
parallel(rect zl, rect z2);

File: cktutil.c - continued */
Returns the impedance of a series combination of impedances
z1l and z2: sum of zl and z2.

series(rect zl1l, rect z2)

return addc(zl, z2);

Returns the impedance of a parallel combination of impedances
z1l and z2: reciprocal of the sum of 1 / z1 and 1 / z2.

parallel(rect zl, rect z2)
polar pl, p2, p;
rect z;

pl = rect_to_polar(zl);

pl.r =1/ pl.r; /* reciprocal of z1 */
pl.theta = -pl.theta;

p2 = rect_to_polar(z2);

p2.r =1/ p2.r; /* reciprocal of z2 */
p2.theta = -p2.theta;

z = addc(polar_to_rect(pl), polar_to_rect(p2)); /* sum reciprocals
p = rect_to_polar(z);

p.r=1/p.r; /* take reciprocal of the sum */
p.theta = -p.theta;

z = polar_to_rect(p); /* convert to rect. */

return z; /* return in rect form */

Figure 15.20: Code for series() and parallel()

589

590 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

R1 L

Figure 15.21: An Example Circuit

15.3 Integrals

Another common operation that arises in engineering and scientific computing is integration.
While software application packages exist to perform symbolic integration, some functions do not
lend themselves to such a “closed form” method. A common computing method for approximating
the value of an integral in numeric integration. In this section we will develop a small program
implementing Simpson’s Rule for numeric integration.

The integral of a function between specified limits gives the area under the function curve as
shown in Figure 15.23. Numeric methods can approximate the area under the curve by summing
approximate sub-areas under linearized parts of the function at uniformly sampled points (Figure
15.24). The smaller the sampling interval, h, the greater the precision of the computed integral.
An algorithm to evaluate such an integral may be written in terms of the value of the function at
sample points between the two limits. For example, assume the limits of integration for function,
f(z) are @ = @ and « = b. Then, the function values between the two limits at intervals of h are:

f(a), fla+h), fla+2h),..., f(b)

The total number of samples is
(b—a)
h
There are many methods to approximate the value of an integral in terms of these sample values.
Simpson’s Rule gives a fairly accurate integral of function f(x) between specified limits a and b:

h
Integralvalue = g(yo + 4y 4+ 2y + 4ys + 2y + - yn)

where, y, = f(a+ kh) for k =0,1,2,....n, h is the sampling interval, and n = b;“ with h adjusted
so that n is an even integer. Except for the multiplier %, the above sum is called the Simpson
sum. Observe that in the Simpson sum, sample values of the function evaluated at odd k., i.e.
Y1, Y3, Ys, - - ., are multiplied by 4, and sample values at even values of k, except for yq and y,, are
multiplied by 2. Finally, sample values yo and y,, are added without a multiplier.

We will now slightly modify the concept of a generic sum from Chapter 14 to implement a func-
tion that numerically evaluates an integral of a specified function between two limits, i.e. modify
the generic function, sum(), into a generic Simpson sum function. Since integral computation

requires real numbers, we use type double for all our computation. The parameters to simpsum

15.3. INTEGRALS 591

/%

*/

File; imped.c

Other Source Files: computil.c, cktutil.c

Header Files: compdef.h, computil.h, cktutil.h

This program finds the impedance of an electrical circuit for
different values of the components and the frequency. The
circuit consists of a series of two sub-circuits: a series
combination of a resistor R1 and an inductor L, and a parallel
combination of a resistor R2 and a capacitor C. The values of
these components are specified by the user together with the
angular frequency w in radians per second. The impedance is found
for each user specified set of values until EOF.

#include <stdio.h>
#include <math.h>
#include '"compdef.h"
#include "computil.h"
#include "cktutil.h"
main()

{

rect z, zl1, z2;
double r1, r2, 1, c, w;

printf ("***xImpedance of Electrical Circuits***\n\n");
printf("Ckt: A series combination of:\n");

printf (" R1 and L in series, and\n'");

printf (" R2 and C in parallel.\n");

printf ("Type values of R1 R2 L C w, EOF to quit\n");

while (scanf("%1f %1f %1f %1f %1f",
&ri1, &r2, &1, &c, &w) '= EOF) {

z1l = series(comp_imped(’r’, ril, w), comp_imped(’1l’, 1, w));
if (w == [l ¢ == 0)

z2 = comp_imped(’r’, r2, w);
else

z2 = parallel(comp_imped(’r’, r2, w),

comp_imped(’c’, c, w));

z = series(zl, z2);
printf ("Impedance of series branch zl = ");
print_rect(z1);
printf ("Impedance of parallel branch z2 = ");
print_rect(z2);
printf("Overall impedance z = ");
print_rect(z);

Figure 15.22: Driver program for an example circuit

592 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

f(x)
X
0 a b
Figure 15.23: Integral of a Function from a to b
f(x)
X
0 a b

Figure 15.24: Function Sampling at Intervals of h

15.3. INTEGRALS 593

/* File: simputil.h */
double simpsum(double (*fp) (), double a, double (*up)(),
double step, double b);

/* File: simputil.c */
#include <stdio.h>
#include "simputil.h"
/* Returns the Simpson sum of *fp from a to b. */
double simpsum(double (*fp) (), double a, double (*up)(),
double step, double b)
{ double i, cumsum = 0;
int m;

for (i =a, m=0; i <b; m++, 1 = (*up) (i, step)) {
if (m == 0)
cumsum += (kfp) (1) ;
else if (m % 2)
cumsum += 4 * (*fp) (1);
else
cumsum += 2 * (*fp)(1);
t
cumsum += (*fp)(b);
return cumsum;

Figure 15.25: Code to compute the Simpson sum

are the function pointer, £p, a lower limit, a, an update function pointer, up, a sampling interval,
step, and an upper limit, b. The code is shown in Figure 15.25.

The integer variable, m represents the sample number. If m is zero, the function sample is
added to the cumulative sum, if it is odd, the sample value times 4 is added to the cumulative
sum; otherwise, sample value times 2 is added. Finally, the sample value y, at b is added and
the resulting Simpson sum is returned. It is easy now to implement the function integral()
to compute the integral of a function between limits a and b. It merely gets the Simpson sum,
multiplies by step/3 and returns it as seen in Figure 15.26 The update function incr() merely
returns the value of its first argument increased by the value of the second argument, step. This
function is included in sumutil.c together with other useful functions, self (), square(), and
cube() shown in Figure 15.27.

Finally, we write a simple driver that computes integrals of several functions using integral ()
shown in Figure 15.28. The program first reads the sampling interval, h; then repeatedly reads
the integration limits until EOF. For each set of limits, it calculates the number of samples, n, for
the specified h. Since the Simpson sum requires an even number of samples, n is increased by one
if it is odd, and the sampling interval h is adjusted to correspond to the even value of n. Then,
the program computes the integral by calling integral () for three different functions: a straight

594 CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

/* File: simputil.h - continued */
double integral(double (*fp) (), double a, double b, double step);

/* File: simputil.c - continued */

/* Computes integral of a function *fp from a to b in sample
steps of step.

*/

double integral(double (*fp) (), double a, double b, double step)

{ double r, incr();

r = simpsum(fp, a, incr, step, b);
return r * step / 3;

Figure 15.26: Code for integral()

line f(z) = z, a square, f(z) = 2%, and a cube, f(z) = 2°. The values of integrals are printed.

The program is in three source files, which must be compiled and linked: integr.c, sumutil.c,
and simputil.c. Here are two sample sessions with different sampling intervals:

**x*Integration by Simpson’s RuleX*x*

Integrals of x, square of x, and cube of x
Sampling interval for integration: 0.1
Type lower and upper limits, EOF to quit
01

Integral of st. line = 0.566667

Integral of square = 0.400000

Integral of cubic = 0.316667

"D

**x*Integration by Simpson’s RuleX*x*

Integrals of x, square of x, and cube of x
Sampling interval for integration: (.01
Type lower and upper limits, EOF to quit
01

Integral of st. line = 0.500000

Integral of square = 0.333333

Integral of cubic = 0.250000

"D

Remember, the smaller the sampling interval, the greater the accuracy of the computed integral.
The first session specifies a fairly large sampling interval of 0.1 and the results are not very accurate.
The exact answers for the integrals are 0.5, 0.3333, and 0.25. The second session specifies a

15.3. INTEGRALS 395

/* File: sumutil.h - continued */
double self(double x);

double square(double x);

double cube(double x);

double incr(double x, double step);

/% File: sumutil.c - continued */
/% Returns x. */

double self(double x)

{

return X;

/* Returns square of x. */
double square(double x)

{

return x * Xx;

/% Returns cube of x. */
double cube(double x)
{

return x * X * X;

/* Returns x incremented by step. */
double incr(double x, double step)

{

return x + step;

Figure 15.27: Code for self (), cube(), and incr()

596

/%

*/

CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

File: integr.c

Other Source Files: sumutil.c, simputil.c

Header Files: sumutil.h, simputil.h

This program computes definite integrals of several functions
between specified limits. Parameters of integral() are: a
function pointer, limits, and number of samples. It returns
the integral of that function. Integrals of straight line,
square, and a cubic are printed out for specified limits.
Simpson’s Rule is used to compute integral of a function f(x)
between limits a and b as follows:

I =(h/3) % (yO+ 4yl + 2y2 + 4y3 + 2y4 +...+ yn),
where, yk = f(a + kh), and h = (b - a) / n for some even integer

n. Except for the multiplier h/3, the above sum is called the
Simpson sum.

#include <stdio.h>
#include "sumutil.h"

#include "simputil.h"

main()

{

double r, a, b, h, self(), square(), cube();
int n;

printf ("**xIntegration by Simpson’s Rule*x*\n\n");
printf("Integrals of x, square of x, and cube of x\n");
printf("Sampling interval for integration: ");
scanf ("%1£f", &h);
printf ("Type lower and upper limits, EOF to quit\n");
while (scanf("%1f %1f", &a, &b) '= EOF) {
n=(b-a)/ h;
if (n % 2) {
n++;
h=(-a)/ n;
t
r = integral(self, a, b, h);
printf("Integral of st. line = %f\n", r);
r = integral(square, a, b, h);
printf("Integral of square = %f\n", r);
r = integral(cube, a, b, h);
printf("Integral of cubic = %f\n", r);

Figure 15.28: Driver for Numeric Integration Program

15.4. SUMMARY 597

somewhat better sampling interval 0.01, and the results are quite accurate. A smaller sampling
interval would be even better, but would require more computation time. A compromise between
accuracy and speed is required in most numeric computations.

15.4 Summary

In this chapter we have shown how we can use the features of the C language as well as the pro-
gram design techniques we have discussed throughout this text to implement programs for several
common engineering and scientific applications. In general, we have done this by developing a set
of utility functions to use as a toolbag for writing the application. Our treatment of engineering
and scientific computing has not been, by any means, comprehensive. References, such as [1] be-
low, can be a source of algorithms for many additional applications. However, with your current
knowledge of C you can now develop programs from these algorithms to solve your problems.

E ho‘omaika‘i ‘oukou.
(Good luck).
References:

[1]. Press, William H., Flannery, Brian P., Teukolsky, Saul A.; Vettering, William T., Numerical
Recipes in C, Cambridge University Press, Cambridge, 1988.

598

CHAPTER 15. ENGINEERING PROGRAMMING EXAMPLES

15.5 Problems

1.

Write a menu driven program that allows the user to specify a matrix operation: add,
subtract, multiply.

. Write a simple calculator program that performs complex number arithmetic. The input

should be an operand, followed by an operator, followed by an operand. The output should
be the result of applying the operator to operands.

Repeat 2, but allow the user to continue entering operators and operands in sequence. The
user may also request that a value should be saved for later use.

Evaluate a polynomial P(z) with specified coefficients for a complex value of the variable.
The highest degree of the polynomial is 10. The user must enter coefficient and exponent
pairs for the polynomial, and specify the value of the variable for which the polynomial is
to be evaluated.

Consider a rational function of a variable s:
P(s)
Q(s)

where P(s) and Q(s) are polynomials in a variable, s, with real coefficients. Evaluate the

function for a value of s = jw. Evaluate the function for different values of s. Plot the
magnitude and angle of the values.

