
Chapter �

Processing Character Data

So far we have considered only numeric processing� i�e� processing of numeric data represented
as integer and �oating point types� Humans also use computers to manipulate data that is not
numeric such as the symbols used to represent alphabetic letters� digits� punctuation marks� etc�
These symbols have a standard meaning to us� and we use them to represent �English� text� In
the computer� the symbols used to store and process text are called characters and C provides
a data type� char� for these objects� In addition� communication between humans and computers
is in the form of character symbols� i�e� all data typed at a keyboard and written on a screen
is a sequence of character symbols� The functions scanf�� and printf�� perform the tasks of
converting between the internal form that the machine understands and the external form that
humans understand�

In this chapter� we will discuss character processing showing how characters are represented in
computers and the operations provided to manipulate character data� We will develop programs
to process text to change it from lower case to upper case� separate text into individual words�
count words and lines in text� and so forth� In the process� we will present several new control
constructs of the C language� describe user interfaces in programs� and discuss input�output of
character data�

��� A New Data Type� char

The complete set of characters that can be recognized by the computer is called the character
set of the machine� As with numbers� the representation in the computer of each character in the
set is done by assigning a unique bit pattern to each character� The typical character set consists
of the following types of characters	

Alphabetic lower case� �a������ �z�

Alphabetic upper case� �A������ �Z�

Digit symbols � �������� �	�

Punctuation � ���� ���� �
�� etc�

��

�
 CHAPTER �� PROCESSING CHARACTER DATA

Character Meaning

��a� alert �bell�

��b� backspace

��f� form feed

��n� newline

��r� carriage return

��t� horizontal tab

��v� vertical tab

���� backslash

���� single quote

���� double quote

��
� question mark

Table ��
	 Escape Sequences

Space � � �

Special symbols � ���� ���� ���� etc�

Control Characters � newline� tab� bell or beep� etc�

For example� a digit symbol is character type data� so when we type ��� at the keyboard� we
are typing a sequence of character symbols	 ���� followed by ���� followed by ���� The function
scanf�� takes this sequence and converts it to the internal form of the equivalent number� ����
Similarly� all writing on the screen is a sequence of characters so printf�� takes the internal form
of the number and converts it to a sequence of characters which are written onto the screen�

In C programs� variables may be declared to hold a single character data item by using the
keyword char as the type speci�er in the declaration statment	

char ch

A character constant is written surrounded by single quotation marks� e�g� �a�� �A�� ���� ����
etc� Only printable character constants can be written in single quotes� not control characters� so
writing of non�printable control character constants requires special handling� In C� the backslash
character� n� is used as an escape character which signi�es something special or di�erent from the
ordinary and is followed by one character to indicate the particular control character� We have
already seen one such control sequence in our printf�� statments� the newline character� �nn��
Other frequently used control character constants written with an escape sequence� include �nt�
for tab� �na� for bell� etc� Table ��
 shows the escape sequences used in C� The newline� tab� and
space characters are called white space characters� for obvious reasons�

Let us consider a simple task of reading characters typed at the keyboard and writing them
to the screen� The task is to copy �or echo� the characters from the input to the output� We will
continue this task until there is no more input� i�e� until the end of the input �le�

���� A NEW DATA TYPE� CHAR
��

�� File� copy��c

Programmer�

Date�

This program reads a stream of characters� one character at

a time� and echoes each to the output until EOF�

��

�include �stdio�h�

main��

� char ch
 �� declaration for a character object ch ��

int flag
 �� flag stores the number of items read by scanf�� ��

printf�����Copy Program����n�n��

printf��Type text� terminate with EOF�n��

flag � scanf���c�� �ch�
 �� read the first char ��

while �flag �� EOF� � �� repeat while not EOF ��

printf���c�� ch�
 �� print the last char read ��

flag � scanf���c�� �ch�
 �� read the next char� update flag ��

� �� flag is EOF� ch may be unchanged ��

�

Figure ��
	 Code for copy��c

TASK

COPY�	 Write out each character as it is read until the end of input �le�

The algorithm can be stated simply as	

read the first character

while there are more characters to read

write or print the previously read character

read the next character

The code for this program is shown in Figure ��
�

The keyword char declares a variable� ch� of character data type� We also declare an integer
variable� flag� to save the value returned by scanf��� Recall� the value returned is either the
number of items read by scanf�� or the value EOF de�ned in stdio�h� �We do not need to know
the actual value of EOF to use it��

After the title is printed� a character is read by the statement	

�� CHAPTER �� PROCESSING CHARACTER DATA

flag � scanf���c�� �ch�

The conversion speci�cation for character type data is �c� so this scanf�� reads a single character
from the input� If it is not an end of �le keystroke� the character read is stored into ch� and the
value returned by scanf���
� is saved in flag� As long as the value of flag is not EOF� the loop
is entered� The loop body �rst prints the value of ch� i�e� the last character read� and then� the
assignment statement reads a new character and updates flag� The loop terminates when flag is
EOF� i�e� when an end of �le keystroke is detected� Remember� scanf�� does not store the value�
EOF into the object� ch� DO NOT TEST THE VALUE OF ch FOR EOF� TEST flag� A sample
session is shown below	

���Copy Program���

Type text� terminate with EOF

Now is the time for all good men
Now is the time for all good men

To come to the aid of their country�

To come to the aid of their country�

�D

The sample session shows that as entire lines of characters are entered� they are printed� Each
character typed is not immediately printed� since no input is received by the program until a
newline character is typed by the user� i�e� the same bu�ering we saw for numeric data entry�
When a newline is typed� the entire sequence of characters� including the newline� is placed in
the keyboard bu�er and scanf�� then reads input from the bu�er� one character at a time� up
to and including the newline� In our loop� each character read is then printed� When the bu�er
is exhausted� the next line is placed in the bu�er and read� and so on� So� scanf�� is behaving
just as it did for numeric data� each call reads one data item� in this case a character ��c�� One
notable di�erence between reading numeric data and character data is that when scanf�� reads
a character� leading white space characters are read� one character at a time� not skipped over as
it is when reading numeric data�

����� The ASCII Character Set

Character data is represented in a computer by using standardized numeric codes which have
been developed� The most widely accepted code is called the American Standard Code for

Information Interchange �ASCII�� The ASCII code associates an integer value for each symbol
in the character set� such as letters� digits� punctuation marks� special characters� and control
characters� Some implementations use other codes for representing characters� but we will use
ASCII since it is the most widely used� The ASCII characters and their decimal code values are
shown in Table ���� Of course� the internal machine representation of characters is in equivalent
binary form�

���� A NEW DATA TYPE� CHAR
��

ASCII Character ASCII Character ASCII Character

value value value

��� �� ��� � � ! V

��" �A ��� � � # W

��� �B ��$ % � X

��� �C ��! � � 	 Y

��� �D ��# � �	� Z

��$ �E �� � �	" &

��! �F ��	 " �	� �

��# �G �$� � �	� '

�� �H �$" � �	� �

��	 �I �$� � �	$ (

�"� �J �$� $ �	!)

�"" �K �$� ! �	# a

�"� �L �$$ # �	 b

�"� �M �$! �		 c

�"� �N �$# 	 "�� d

�"$ �O "$ � "�" e

�"! �P �$	
 "�� f

�"# �Q �!� � "�� g

�" �R �!" � "�� h

�"	 �S �!� � "�$ i

��� �T �!�
 "�! j

��" �U �!� � "�# k

��� �V �!$ A "� l

��� �W �!! B "�	 m

��� �X �!# C ""� n

��$ �Y �! D """ o

��! �Z �!	 E ""� p

��# �& �#� F ""� q

�� �� �#" G ""� r

��	 �' �#� H ""$ s

��� �� �#� I ""! t

��" �% �#� J ""# u

��� &space' �#$ K "" v

��� � �#! L ""	 w

��� � �## M "�� x

��$ � �# N "�" y

��! � �#	 O "�� z

��# � � � P "�� �

�� � � " Q "�� *

��	 � � � R "�$ �

��� � � � S "�! +

��" � � � T "�# DEL

��� � � $ U

Table ���	 ASCII Table

�� CHAPTER �� PROCESSING CHARACTER DATA

The ASCII table has
�� characters� with values from � through
��� Thus� � bits are su�cient
to represent a character in ASCII� however� most computers typically reserve
 byte� �� bits�� for
an ASCII character� One byte allows a numeric range from � through ��� which leaves room for
growth in the size of the character set� or for a sign bit� Consequently� a character data type may
optionally represent signed values� however� for now� we will assume that character data types are
unsigned� i�e� positive integer values� in the range ��
���

Looking at the table� note that the decimal values � through �
� and
��� represent non�
printable control characters� All other characters can be printed by the computer� i�e� displayed
on the screen or printed on printers� and are called printable characters� All printable characters
and many control characters can be input to the computer by typing the corresponding keys on
the keyboard� The character column shows the key�s� that must be pressed� Only a single key
is pressed for a printable character� however� control characters need either special keys on the
keyboard or require the CTRL key pressed together with another key� In the table� a control key
is shown by the symbol �� Thus� �A is control�A� i�e� the CTRL key kept pressed while pressing
the key� A�

Notice that the character �A� has the code value of
�� �B� has the value

� and so on� The
important feature is the fact that the ASCII values of letters �A� through �Z� are in a contiguous
increasing numeric sequence� The values of the lower case letters �a� through �z� are also in a
contiguous increasing sequence starting at the code value ��� Similarly� the digit symbol characters
��� through �	� are also in an increasing contiguous sequence starting at the code value ��� As
we shall see� this feature of the ASCII code is quite useful�

It must be emphasized that a digit symbol is a character type� Digit characters have code
values that di�er from their numeric equivalents	 the code value of ��� is ��� that of �"� is
��� that of ��� is ��� and so forth� The table shows that the character with code value � is a
control character� ��� called the NULL character� Do NOT confuse it with the digit symbol
���� Remember� a digit character and the equivalent number have di�erent representations�

Besides using single quotes� it is also possible to write character constants in terms of their
ASCII values in a C program� using either their octal or their hexadecimal ASCII values� In writing
character constants� the octal or hexadecimal value follows the escape character� n� as shown in
Table ���� At most three octal digits or at most two hexadecimal digits are needed� Note� after the
escape backslash� a leading zero should not be included in writing octal or hexadecimal numbers�
The last example in Table ���� �n��� is called the NULL character� whose ASCII value is zero�
Once again� this is NOT the same character as the printable digit character� ���� whose ASCII
value is ���

����� Operations on Characters

As we just saw� in C� characters have numeric values and� therefore� may be used in numeric
expressions� It is the ASCII code value of a character that is used in these expressions� For
example �referring to Table ����� the value of �a� is ��� and that of �A� is
�� So� the expression
�a� % �A� is evaluated as ���
�� which is ��� As we shall see� this ability to do arithmetic with

���� A NEW DATA TYPE� CHAR
�

Character Constants Meaning

����#�� ���#�� ��#� character whose value is octal #

��"�"� character whose octal value is "�"� or

whose decimal value is !$� i�e� �A�

��xB� character with hex� value B� i�e�

with decimal value ""�

���� character whose value is zero

it is called the NULL character

Table ���	 Escape sequences with Octal � Hexadecimal values

character data simpli�es character processing� When a character variable or constant appears in
an expression� it is replaced by its ASCII value of type integer� When a character cell is assigned
an integer value� the value is interpreted to be an ASCII value� In other words� a character and
its ASCII value are used interchangeably as required by the context� While a cast operator can
be used� we do not need it to go from character type to integer type� and vice versa� Here are
some expressions using character variables and constants�

ch � 	#
 �� ch �%%% ASCII value 	#� i�e�� �a� ��

ch � ��"�"�
 �� ch �%%% �a�
 octal "�" is decimal 	# ��

ch � ��x!"�
 �� ch �%%% �a�
 hexadecimal !" is decimal 	# ��

ch � �a�
 �� ch �%%% �a� ��

ch � ch % �a� � �A�
 �� ch �%%% �A� ��

ch � �d�

ch � ch % �a� � �A�
 �� ch �%%% �D� ��

ch � ch % �A� � �a�
 �� ch �%%% �d� ��

The �rst group of four statements merely assigns lower case �a� to ch in four di�erent ways	
the �rst assigns a decimal ASCII value� the second assigns a character in octal form� the third
assigns a character in hexadecimal form� the fourth assigns a character in a printable symbolic
form� All of these statements have exactly the same e�ect�

The next statement� after the �rst group� assigns the value of an expression to ch� The right
hand side of the assignment is	

ch % �a� � �A�

�� CHAPTER �� PROCESSING CHARACTER DATA

Since the value of ch is �a� from the previous four statements� the above expression evaluates to
the value of �a� % �a� � �A�� i�e� the value of �A�� In other words� the right hand side expression
converts lower case �a� to its upper case version� �A�� which is then assigned to ch� Since the
values of lower case letters are contiguous and increasing �as are those of upper case letters� �a�
is less than �b�� �b� less than �c�� and so forth� Also� the o�set value of each letter from the base
of the alphabet is the same for lower case letters as it is for upper case letters� For example� �d�
% �a� is the same as �D� % �A�� So� if ch is any lower case letter� then the expression

ch % �a� � �A�

results in the upper case version of ch� This is because the value of ch % �a� is the o�set of ch
from the lower case base �a�� adding that value to the upper case base �A� results in the upper
case version of ch� So for example� if ch is �f� then the value of the above expression is �F��
Similarly� if ch is an upper case letter� then the expression

ch % �A� � �a�

results in the lower case version of ch which may then be assigned to a variable�

Using this fact� the last group of three statements in the above set of statements �rst assigns a
lower case letter �d� to ch� Then the lower case value of ch is converted to its upper case version�
and then back to lower case�

As we mentioned� all lower case and upper case letters have contiguous and increasing values�
The same is true for digit characters� Such a contiguous ordering makes it easy to test if a given
character� ch� is a lower case letter� an upper case letter� or a digit� For example� any lower case
letter has a value that is greater than or equal that of �a� AND less than or equal to that of �z��
From this� we can write a C expression that is True if and only if ch is a lower case letter	

�ch �� �a� �� ch �� �z��

Here is a code fragment that checks whether a character is a lower case letter� an upper case
letter� a digit� etc�

if �ch �� �a� �� ch �� �z��

printf���c is a lower case letter�n�� ch�

else if �ch �� �A� �� ch �� �Z��

printf���c is an upper case letter�n�� ch�

else if �ch �� ��� �� ch �� �	��

printf���c is a digit symbol�n�� ch�

else

printf���c is neither a letter nor a digit�n��

���� A NEW DATA TYPE� CHAR
��

Observe the multiway decision and branch	 if ��� else if ��� else if ��� else� Only
one of the branches is executed� The �rst if expression checks if the value of ch is between the
values of �a� and �z�� a lower case letter� Only if ch is not a lower case letter� does control proceed
to the �rst else if part� which tests if ch is an upper case letter� Only if ch is not an upper case
letter� does control proceed to the next else if part� which tests if ch is a digit� Finally� if ch is
not a digit� the last else part is executed� Depending on the value of ch� only one of the paths is
executed with its corresponding printf�� statement�

Let us see how the expression

�ch �� �a� �� ch �� �z��

is evaluated� First� the comparison ch �� �a� is performed� then� ch �� �z� is evaluated�
�nally� the results of the two sub�expressions are logically combined by the AND operator� Eval�
uation takes place in this order because the precedence of the binary relational operators ����
��� ��� etc�� is higher than that of the binary logical operators ���� jj�� We could have used
parentheses for clarity� but the precedence rules ensure the expression is evaluated as desired�

One very common error is to write the above expression analogous to mathematical expressions	

��a� �� ch �� �z��

This would not be found to be an error by the compiler� but the e�ect will not be as expected�
In the above expression� since the precedence of the operators is the same� they will be evaluated
from left to right according to their associativity� The result of �a� �� ch will be either True or
False� i�e�
 or �� which will then be compared with �z�� The result will be True since
 or � is
always less than �z� �ASCII value
���� So the value of the above expression will always be True
regardless of the value of ch � not what we would expect�

Let�s write a program using all this information� Our next task is to read characters until
end of �le and to print each one with its ASCII value and what we will call the attributes of the
character� The attributes are a character�s category� such as a lower case or an upper case letter�
a digit� a punctuation� a control character� or a special symbol�

Task

ATTR	 For each character input� print out its category and ASCII value in decimal� octal� and
hexadecimal forms�

The algorithm requires a multiway decision for each character read� A character can only be
in one category� so each character read will lead to the execution of one of the paths in a multiway
decision� Here is the algorithm�

read the first character

�� CHAPTER �� PROCESSING CHARACTER DATA

repeat as long as end of file is not reached

if the character is a lower case letter

print the various character representations� and

print that it is a lower case letter

else if it is an upper case letter

print the various character representations� and

print that it is an upper case letter

else if it is a digit

print the various character representations� and

print that it is a digit

etc��

read the next character

Notice we have abstracted the printing of the various representations of the character �as a char�
acter and its ASCII value in decimal� octal and hex� into a single step in the algorithm	 print

the various character representations� and we perform the same step in every branch of
the algorithm� This is a classic situation calling for the use of a function	 abstract the details
of an operation and use that abstraction in multiple places� The code implementing the above
algorithm is shown in Figure ���� We have declared a function print reps�� which is passed a
single character argument and expect it to print the various representations of the character� We
have used the function in the driver without knowing how print reps�� will perform its task�

We must now write the function print reps��� The character�s value is its ASCII value�
When the character value is printed as a character with conversion speci�cation �c� the symbol
is printed� when printed as a decimal integer with conversion speci�cation �d� the ASCII value
is printed in decimal form� Conversion speci�cation �o prints an integer value in octal form� and
�x prints an integer value in hexadecimal form� We simply need a printf�� call with these four
conversion speci�ers to print the character four times� The code for print reps�� is shown in
Figure ���� The function simply prints its parameter as a character� a decimal integer� an octal
integer� and a hexadecimal integer�

Sample Session	

���Character Attributes���

Type text� terminate with EOF

Aloha	 �A

A� ASCII value decimal !$� octal "�"� hexadecimal �"� an upper case letter

l� ASCII value decimal "� � octal "$�� hexadecimal !c� a lower case letter

o� ASCII value decimal """� octal "$#� hexadecimal !f� a lower case letter

h� ASCII value decimal "��� octal "$�� hexadecimal ! � a lower case letter

a� ASCII value decimal 	#� octal "�"� hexadecimal !"� a lower case letter

�� ASCII value decimal ��� octal $�� hexadecimal �c� a punctuation symbol

�A� ASCII value decimal "� octal "� hexadecimal "� a control character

�� ASCII value decimal ��� octal �"� hexadecimal �"� a punctuation symbol

���� A NEW DATA TYPE� CHAR
��

�� File� attr�c

This program reads characters until end of file� It prints the

attributes of each character including the ASCII value�

��

�include �stdio�h�

int print(reps� char ch �

main��

� char ch

int flag

printf�����Character Attributes����n�n��

printf��Type text� terminate with EOF �n��

flag � scanf���c�� �ch�
 �� read the first char ��

while �flag �� EOF� �

if �ch �� �a� �� ch �� �z�� � �� lower case letter
 ��

print(reps�ch�

printf��lower case letter�n��

�

else if �ch �� �A� �� ch �� �Z�� � �� upper case letter
 ��

print(reps�ch�

printf��an upper case letter�n��

�

else if �ch �� ��� �� ch �� �	�� � �� digit character
 ��

print(reps�ch�

printf��a digit symbol�n��

�

else if �ch �� ��� ** ch �� ��� ** ch �� �
� ** ch �� ��� **

ch �� �
� ** ch �� ���� � �� punctuation
 ��

print(reps�ch�

printf��a punctuation symbol�n��

�

else if �ch �� � �� � �� space
 ��

print(reps�ch�

printf��a space character�n��

�

else if �ch � �� ** ch �� "�#� � �� control character
 ��

print(reps�ch�

printf��a control character�n��

�

else � �� must be a special symbol ��

print(reps�ch�

printf��a special symbol�n��

�

flag � scanf���c�� �ch�
 �� read the next char ��

� �� end of while loop ��

� �� end of program ��

Figure ���	 Code for ASCII Attributes

�
 CHAPTER �� PROCESSING CHARACTER DATA

�� File� attr�c %%% continued

��

int print(reps� char ch�

�

printf���c� ASCII value decimal �d� octal �o� hexadecimal �x� ��

ch�ch�ch�ch�

�

Figure ���	 Printing character representations

� ASCII value decimal "�� octal "�� hexadecimal a� a control character

�D

The last line printed refers to the newline character� Remember� every character including the
newline is placed in the keyboard bu�er for reading and� while scanf�� skips over leading white
space when reading a numeric data item� it does not do so when reading a character�

Can we improve this program� The driver �main��� shows all the details of character testing�
beyond the logic of what is being performed here� so it may not be very readable� Perhaps we
should de�ne a set of macros to hide the details of the character testing expressions� For example�
we might write a macro	

�define IS(LOWER�ch� ��ch� �� �a� �� �ch� �� �z��

Then the �rst if test in main�� would be coded as	

if � IS(LOWER�ch� � �

���

which directly expresses the logic of the program� The remaining expressions can be recoded using
macros similarly and this is left as an exercise at the end of the chapter�

One other thought may occur to us to further improve the program� Can we make the function
print reps�� a little more abstract and have it print the various representations as well as the
category� To do this we would have to give additional information to our new function� which
we will call print category��� We need to tell print category�� the character to print as well
as its category� To pass the category� we assign a unique code to each category and pass the
appropriate code value to print category��� To avoid using �magic numbers� we de�ne the
following macros	

�define LOWER �

�define UPPER "

���� A NEW DATA TYPE� CHAR
��

�define DIGIT �

�define PUNCT �

�define SPACE �

�define CONTROL $

�define SPECIAL !

Placing these de�nes �together with the comparison macros� in a header �le� category�h� we can
now recode the program as shown in Figure ���� The code for print category�� is also shown�
Looking at this code� it may seem ine�cient in that we are testing the category twice� once in
main�� using the character� and again in print category�� using the encoded parameter� Later
in this chapter we will see another way to code the test in print category��which is more e�cient
and even more readable� The contents of the header �le� category�h is left as an exercise� The
program shown in Figure ��� will behave exactly the same as as the code in Figure ��� producing
the same sample session shown earlier�

����� Character I�O Using getchar�� and putchar��

We have already seen how to read and print characters using our usual I�O built in functions�
scanf�� and printf��� i�e� the �c conversion speci�er� We have also included the header �le
stdio�h in all our programs� because it contains the de�nition for EOF� and declares prototypes for
these formatted I�O routines� In addition� stdio�h contains two other useful routines� getchar��
and putchar��� which are simpler to use than the formatted routines for character I�O� We use the
term routine for getchar�� and putchar�� because they are actually macros de�ned in stdio�h

which use more general functions available in the standard library� �Often routines that are macros
are loosely referred to as functions since their use in a program can appear like a function call� so
we will usually refer to getchar�� and putchar�� as functions��

The function getchar�� reads a single character from the standard input and returns the
character value as the value of the function� but to accommodate a possible negative value for
EOF� the type of the value returned is int� �Recall� EOF may be either � or �
 depending on
implementation�� So we could use getchar�� to read a character and assign the returned value
to an integer variable	

int c

c � getchar��

If� after executing this statement� c equals EOF� we have reached the end of the input �le� otherwise�
c is the ASCII value of the next character in the input stream�

While int type can be used to store the ASCII value of a character� programs can become
confusing to read � we expect that the int data type is used for numeric integer data and
that char data type is used for character data� The problem is that char type� depending on
implementation� may or may not allow negative values� To resolve this� C allows us to explicitly

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� attr��c

This program reads characters until end of file� It prints the

attributes of each character including the ASCII value�

��

�include �stdio�h�

�include �category�h�

main��

� char ch

int flag

printf�����Character Attributes����n�n��

printf��Type text� terminate with EOF �n��

flag � scanf���c�� �ch�
 �� read the first char ��

while �flag �� EOF� �

if� IS(LOWER�ch� � print(category�LOWER� ch�

else if� IS(UPPER�ch� � print(category�UPPER� ch�

else if� IS(DIGIT�ch� � print(category�DIGIT� ch�

else if� IS(PUNCT�ch� � print(category�PUNCT� ch�

else if� IS(SPACE�ch� � print(category�SPACE� ch�

else if� IS(CONTROL�ch� � print(category�CONTROL� ch�

else print(category�SPECIAL� ch�

flag � scanf���c�� �ch�
 �� read the next char ��

� �� end of while loop ��

� �� end of program ��

int print(category� int cat� char ch�

�

printf���c� ASCII value decimal �d� octal �o� hexadecimal �x� ��

ch�ch�ch�ch�

if� cat �� LOWER � printf��lower case letter�n��

else if� cat �� UPPER � printf��an upper case letter�n��

else if� cat �� DIGIT � printf��a digit symbol�n��

else if� cat �� PUNCT � printf��a punctuation symbol�n��

else if� cat �� SPACE � printf��a space character�n��

else if� cat �� CONTROL � printf��a control character�n��

else printf��a special symbol�n��

�

Figure ���	 Alternate code for attributes program

���� A NEW DATA TYPE� CHAR
��

declare a signed char data type for a variable� which can store negative values as well as positive
ASCII values	

signed char c

c � getchar��

An explicit signed char variable ensures that a character is stored in a character type object
while allowing a possible negative value for EOF� The keyword signed is called a type quali�er�

A similar routine for character output is putchar��� which outputs its argument as a character
to the standard output� Thus�

putchar�c�

outputs the ASCII character whose value is in c to the standard output� The argument of
putchar�� is expected to be an integer� however� the variable c may be either char type or
int type �ASCII value� since the value of a char type is really an integer ASCII value�

Since both getchar�� and putchar�� are macros de�ned in stdio�h� any program that uses
these functions must include the stdio�h header �le in the program� Let us rewrite our copy
program using these new character I�O routines instead of using scanf�� and printf��� The
new code is shown in Figure ���� Characters are read until getchar�� returns EOF� Each character
read is printed using putchar��� Sample output is shown below�

���File Copy Program���

Type text� EOF to quit

This is a test�
This is a test�

Now is the time for all good men

Now is the time for all good men

to come to the aid of their country�

to come to the aid of their country�

�D

The sample output shown here is for keyboard input so the e�ects of bu�ering the input is
clearly seen	 a line must be typed and entered before the characters become available in the input
bu�er for access by the program and then echoed to the screen�

Using getchar�� and putchar�� are simpler for character I�O because they do not require a
format string as do scanf�� and printf��� Also� scanf�� stores a data item in an object whose
address is given by its argument� whereas getchar�� returns the value of the character read as
its value� Both scanf�� and getchar�� return EOF as their value when they read an end of �le
marker in an input �le�

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� copychr�c

Program copies standard input to standard output�

��

�include �stdio�h�

main��

� signed char c

printf�����File Copy Program����n�n��

printf��Type text� EOF to quit�n��

c � getchar��

while �c �� EOF� �

putchar�c�

c � getchar��

�

�

Figure ���	 Using getchar�� and putchar��

����� Strings vs Characters

Frequently� we have needed to write constants that are not single characters but are sequences of
characters� A sequence of zero or more characters is called a string of characters or simply a
string� We have already used strings as arguments in function calls to printf�� and scanf���
In C� there is no primitive data type for strings� however� as a convenience� string constants �also
called string literals� may be written directly into a program using double quotes� The double
quotes are not part of a string constant� they are merely used to delimit �de�ne the limits�� of the
string constant� �To include a double quote as part of a string� escape the double quote with the
n character��

�This is a string constant��

�This string constant includes newline character��n�

�This string constant includes �� double quotes��

Escape sequences may of course be included in string constants� A string constant may even
contain zero characters� i�e� an empty string	

��

Such a string is also called a null string�

Two adjacent strings are concatenated at compile time� Thus�

���� SAMPLE CHARACTER PROCESSING FUNCTIONS
�

�string�

�c�

�c�

�s� �t� �r� �i� �n� �g�

�c�

�c�

�n��

�n��

Figure ��
	 Strings

�John � �Doe�

are equivalent to	

�John Doe�

Whenever a string constant appears in a source program� the compiler stores the sequence of
characters in contiguous memory locations and appends a NULL character to indicate the end
of the string �see Figure ��
�� The compiler then replaces the string constant by the address
where the characters are stored� Observe that a string of a single character is di�erent from a
character constant� Thus� �c� is a character constant� but� �c� is a string constant consisting of
one character and the NULL character� as seen in the �gure�

As we have said� a character constant takes on its ASCII value� The value of a string constant
is the address where the string is stored� How this value can be used will be discussed in Chapter

� For now� think of a string constant as a convenient representation� the exact nature of which
will become clear later�

��� Sample Character Processing Functions

So far we have merely read and printed characters and determined their attributes� Character
processing requires manipulation of input characters in meaningful ways� For example� we may
wish to convert all lower case letters to upper case� all upper case letters to lower case� digit
characters to their numeric equivalents� extract words� extract integers� and so forth� In this
section we develop several programs which manipulate characters� beginning with simple example
functions and continuing with programs for more complex text processing�

�� CHAPTER �� PROCESSING CHARACTER DATA

����� Converting Letter Characters

Our next task is to copy input characters to output as before except that all lower case letters are
converted to upper case�

Task

COPY
	 Copy input characters to output after converting lower case letters to upper case�

The algorithm is similar to COPY�� except that� before printing� each character it is converted
to upper case� if necessary�

read the first character

repeat as long as NOT end of file

convert character to upper case

print the converted character

read the next character

We will write a function� uppercase��� to convert a character� The function is given a character
and if its argument is a lower case letter� uppercase��will return its upper case version� otherwise�
it returns the argument character unchanged� The algorithm is	

if lower case convert to upper case�

otherwise� leave it unchanged

The prototype for the function is	

char uppercase�char ch�

The code for the driver and the function is shown in Figure ���� The driver is straight forward�
each character read is printed in its uppercase version� The while expression is	

��ch � getchar��� �� EOF�

Here we have combined the operations of reading a character and testing for EOF into one ex�
pression� The innermost parentheses are evaluated �rst	 getchar�� reads a character and assigns
the returned value to ch� The value of that expression� namely the value assigned to ch� is then
compared with EOF� If it is not EOF� the loop executes� otherwise the loop terminates� The inner
parentheses are essential� Without them� the expression is	

�ch � getchar�� �� EOF�

���� SAMPLE CHARACTER PROCESSING FUNCTIONS
��

�� File� copy"�c

Programmer�

Date�

This program reads a stream of characters until end of file� Each

character read is converted to its upper case version and printed

out�

��

�include �stdio�h�

�define IS(LOWER�c� ��c� �� �a� �� �c� �� �z��

�define TO(UPPER�c� ��c� % �a� � �A��

char uppercase�char ch�

main��

� signed char ch

printf�����Copy Program % Upper Case����n�n��

printf��Type text� terminate with EOF�n��

while ��ch � getchar��� �� EOF�

putchar �uppercase�ch��
 �� print value of uppercase�ch� ��

�

�� Function returns a lower case letter to an upper case� It returns

all other characters unchanged�

��

char uppercase�char c�

�

if � IS(LOWER�c� � �� if c is a lower case letter ��

return TO(UPPER�c�
 �� convert to upper case and return ��

�� otherwise� ��

return c
 �� return c unchanged ��

�

Figure ���	 Code for upper case

�� CHAPTER �� PROCESSING CHARACTER DATA

Since the precedence of an assignment operator is the lowest� getchar�� reads a character and
the returned value is �rst compared to EOF	

getchar�� �� EOF

The value of this comparison expression� � or
� is then assigned to ch	 the wrong result is in
ch� Of course� it is always best to use parentheses whenever there is the slightest doubt� Note�
we have used the call to the function� uppercase��� as the argument for the routine� putchar���
The value returned from uppercase�� is a character� which is then passed to putchar���

The function� uppercase��� checks if c is a lower case letter �using the macro IS LOWER����
in which case it returns the upper case version of c� We have used the macro TO UPPER�� for
the expression to convert to upper case� making our program more readable� When the return

statement is executed� control returns immediately to the calling function� thus� the code after the
return statement is not executed� Therefore� in this case we do not need the else part of the if
statement� In uppercase��� control progresses beyond the if statement only if c is not a lower
case letter� where uppercase�� returns c unchanged� A sample session is shown below	

���Copy Program % Upper Case���

Now is the time for all good men

NOW IS THE TIME FOR ALL GOOD MEN

To come to the aid of their country�

TO COME TO THE AID OF THEIR COUNTRY�

�D

����� Converting Digit Characters to Numbers

Next we discuss how digit symbols can be converted to their numeric equivalents and vice versa�
As we have stated� the character ��� is not the integer� �� �"� is not
� etc� So it becomes necessary
to convert digit characters to their numeric equivalent values� and vice versa� As we have seen�
the digit values are contiguous and increasing� the value of ��� is ��� �"� is ��� and so forth� If we
subtract the base value of ���� i�e� ��� from the digit character� we can convert the digit character
to its numeric equivalent� e�g� ��� % ��� is �� �"� % ��� is
� and so forth� Thus� if ch is a digit
character� then its numeric equivalent is ch % ���� Conversely� suppose n is a positive integer less
than
�� ���
� �� ���� ��� Then the corresponding digit character is n � ����

Using the sketch of an algorithm just described� we can write two functions that convert a
digit character to its integer value� and an integer less than
� to its character representation�
These sound like operations that could be useful in a variety of programs� so we will put the
functions in a �le called charutil�c� These functions are the beginning of a library of character
utility functions we will build� The code is shown in Figure ���� �We can also place the code for
uppercase�� from the previous example in this �le as part ot the library�� We have included the

���� SAMPLE CHARACTER PROCESSING FUNCTIONS
��

�� File� chrutil�c ��

�� This file contains various utility functions for processing characters ��

�include �stdio�h�

�include �chrutil�h�

�� Function converts ch to an integer if it is a digit� Otherwise� it

prints an error message�

��

int dig(to(int�char ch�

�

if �IS(DIGIT�ch��

return ch % ���

printf��ERROR�dig(to(int� �c is not a digit�n�� ch�

return ERROR

�

�� Function converts a positive integer less than "� to a corresponding

digit character�

��

char int(to(dig�int n�

�

if �n �� � �� n � "��

return n � ���

printf��ERROR�int(to(dig� �d is not in the range � to 	�n�� n�

return NULL

�

Figure ���	 Code for Character Utilities

�
 CHAPTER �� PROCESSING CHARACTER DATA

�� File� charutil�h ��

�� This file contains macros and prototypes for character utilities ��

�define ERROR %"

�define IS(DIGIT�c� ��c� �� ��� �� �c� �� �	��

�define IS(LOWER�c� ��c� �� �a� �� �c� �� �z��

int dig(to(int�char ch�

char int(to(dig�int n�

char uppercase�char ch�

Figure ���	 Header �le for Character Utilities

�le charutil�h where the necessary macros and prototypes are located� This header �le is shown
in Figure ����

The function dig to int�� is given a character and returns an integer� namely the value of
ch % ��� if ch is a digit character� Otherwise� it prints an error message and returns the value
ERROR� Since valid integer values of digits are from � to �� a value of �
 is not normally expected
as a return value so we can use it to signify an error� �Note� we use a macro� in charutil�h� to
de�ne this �magic number��� In int to dig��� given an integer� n� the returned value is a digit
character� n � ���� if n is between � and �� otherwise� a message is printed and the NULL �ASCII
value �� character is returned to indicate an error� We do not use ERROR in this case because
int to dig�� returns a char type value� which may not allow negative values� As was the case
for the function uppercase�� above� in these two functions� we have not used an else part� If the
condition is satis�ed� a return statement is executed� The control proceeds beyond the if part
only if the condition is false� Returning some error value is a good practice when writing utility
functions as it makes the functions more general and robust� i�e� able to handle valid and invalid
data�

Let us consider the task of reading and converting a sequence of digit characters to an equivalent
integer� We might add such an operation to our library of character utilities and call it getint��
�analogous to getchar���� We will assume that the input will be a sequence of digit characters�
possibly preceded by white space� but not by a plus or minus sign� Further� we will assume that
the conversion process will stop when a character other than a digit is read� Usually� the delimiter
will be white space� but any non�digit character will also be assumed to delimit the integer being
read�

The function� getint��� needs no arguments and returns an integer� It will read one character
at a time and accumulate the value of the integer� Let us see how a correct integer is accumulated
in a variable� n� Suppose the digits entered are ��� followed by ���� When we read the �rst digit�
���� and convert it to its integer value� we �nd that n is the number� �� But we do not yet know
if our integer is �� or thirty something� or three hundred something� etc� So we read the next

���� SAMPLE CHARACTER PROCESSING FUNCTIONS
��

character� and see that it is a digit character so we know our number is at least thirty something�
The second digit is ��� which is converted to its integer value� �� We cannot just add � to the
previous value of n ���� Instead� we must add � to the previous value of � multiplied by
� �the
base � we are reading a decimal number�� The new value of n is n � "� � �� or ��� Again� we
do not know if the number being read is �� or three hundred forty something� etc� If there were
another digit entered� say �$�� the new value of n is obtained by adding its contribution to the
previous value of n times
�� i�e�

n � "� � dig(to(int��$��

which is ���� Thus� if the character read�ch� is a digit character� then dig to int�ch� is added
to the previously accumulated value of n multiplied by
�� The multiplication by
� is required
because the new digit read is the current rightmost digit with positional weight of
� so the
weight of all previous digits must be multiplied by the base�
�� For each new character� the new
accumulated value is obtained by	

n � n � "� � dig(to(int�ch�

We can write this as an algorithm as follows	

initialize n to zero

read the first character

repeat while the character read is a digit

accumulate the new value of n by adding

n � "� � the integer value of the digit character

read the next character

return the result

The code for getint�� is shown in Figure ��
�� We have used conditional compilation to test
our implementation by including debug statements to print the value of each digit� ch and the
accumulated value of n at each step� The loop is executed as long as the character read is a
digit� The macro� IS DIGIT��� expands to an expression which evaluates to True if and only if its
argument is a digit� Could we have combined the reading of the character and testing into one
expression for the while�

while� IS(DIGIT�ch � getchar����

The answer is NO� Recall� IS DIGIT�� is a macro de�ned as	

�define IS(DIGIT�c� ��c� �� ��� �� �c� �� �	��

so IS DIGIT�ch � getchar��� would expand to	

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� charutil�c % continued ��

�� Function reads and converts a sequence of digit characters to an integer� ��

�define DEBUG

int getint��

� int n

signed char ch

ch � getchar��
 �� read next char ��

while �IS(DIGIT�ch�� � �� repeat as long as ch is a digit ��

n � n � "� � dig(to(int�ch�
 �� accumulate value in n ��

�ifdef DEBUG

printf��debug�getint� ch � �c�n�� ch�
 �� debug statement ��

printf��debug�getint� n � �d�n�� n�
 �� debug statement ��

�endif

ch � getchar��
 �� read next char ��

�

return n
 �� return the result ��

�

Figure ��
�	 Code for getint��

���� SAMPLE CHARACTER PROCESSING FUNCTIONS
��

��ch � getchar��� �� ��� �� �ch � getchar��� �� �	��

While this is legal syntax �no compiler error would be generated�� the function getchar�� would
be called twice when this expression is evaluated� The �rst character read will be compared with
��� and the second character read will be compared with �	� and be stored in the variable ch�
The lesson here is be careful how you use macros�

Notice we have used the function� dig to int�� in the loop� This is an example of our modular
approach � we have already written a function to do the conversion� so we can just use it here�
trusting that it works correctly� What if dig to int ever returns the ERROR condition� In this
case� we know that that can never happen because if we are in the body of the loop� we know
that ch is a digit character from the loop condition� We are simply not making use of the full
generality of dig to in��t�

If� after adding the prototype for getint�� to charutil�h	

int getint��

we compile the �le charutil�c� we would get a load time error because there is no function main��

in the �le� Remember� every C program must have a main��� To test our program� we can write
a short driver program which simply calls getint�� and prints the result	

main��

�

printf�����Test Digit Sequence to Integer����n�n��

printf��Type a sequence of digits�n��

printf��Integer � �d�n�� getint���
 �� print value ��

�

A sample session is shown below	

���Test Digit Sequence to Integer���

Type a sequence of digits

��

debug�getint� ch � �

debug�getint� n � "!�	�

debug�getint� ch � �

debug�getint� n � "!�	��

Integer � "!�	��

It is clear that something is wrong with the accumulated value of n� The �rst character ��� is read
correctly� but the value of n is

���� The only possibility is that n does not have a correct initial
value� we have forgotten to initialize n to zero� A simple �x is to change the declaration of n in
getint�� to	

� CHAPTER �� PROCESSING CHARACTER DATA

int n � �

A revised sample session is shown below�

���Test Digit Sequence to Integer���

Type a sequence of digits

����
debug�getint� ch � �

debug�getint� n � �

debug�getint� ch � �

debug�getint� n � ��

debug�getint� ch � $

debug�getint� n � ��$

debug�getint� ch � !

debug�getint� n � ��$!

Integer � ��$!

The trace shows that the program works correctly� The value of n is accumulating correctly� It is
� after the �rst character� �� after the next� ���� after the next� and ���
 after the last character�
At this point� we should test the program with other inputs until we are satis�ed with the test
results for all the diverse inputs� If during our testing we enter the input	

���Test Digit Sequence to Integer���

Type a sequence of digits

���
Integer � �

we get the wrong result and no debug output� Notice� we have added some white space at the
beginning of the line� In this case� the �rst character read is white space� not a digit� So the loop
is never entered� no debug statements are executed� and the initial value of n� �� is returned� We
have forgotten to handle the case where the integer is preceded by white space� Returning to our
algorithm� we must skip over white space characters after the �rst character is read	

initialize n to zero

read the first character

skip leading white space

repeat while the character read is a digit

accumulate the new value of n by adding

n � "� � the integer value of the digit character

read the next character

return the result

���� SAMPLE CHARACTER PROCESSING FUNCTIONS

This added step can be implemented with a simple while loop	

while �IS(WHITE(SPACE�ch�� ch � getchar��

For readability� we have used a macro� IS WHITE SPACE��� to test ch� We can de�ne the macro in
charutil�h as follows	

�define IS(WHITE(SPACE�c� ��c� �� � � ** �c� �� ��t� ** �c� �� ��n��

Compiling and testing the program again yields the correct result�

The program may now be considered debugged� it meets the speci�cation given in the task� so
we can eliminate the de�nition for DEBUG and recompile the program� However� at this point
we might also consider the utility and generality of our getint�� function� What happens if the
user does not enter digit characters� What happens at end of the �le� Only after the program is
tested for the �normal� case� should we consider these �abnormal� cases� The �rst step is to see
what the function� as it is currently written� does when it encounters unexpected input�

Let�s look at EOF �rst� If the user types end of �le� getchar�� will return EOF� which is not
white space and is not a digit� So neither loop will be executed and getint�� will return the
initialized value of n� namely �� This may seem reasonable� however� a program using this function
cannot tell the di�erence between the user typing zero and typing end of �le� Perhaps we would
like getint�� to indicate end of �le by returning EOF as getchar�� does� This is easy to add to
our program� before returning n we add a statement	

if�ch �� EOF� return EOF

Of course� if the implementation de�nes EOF as zero� nothing has changed in the behavior of the
function� On the other hand� if the implementation de�nes EOF as �
� we can legally enter � as
input to the program� however� should not expect �
 as a legal value� �In our implementation we
have not allowed any negative number� so EOF is a good choice for a return value at end of �le��

Next� let us consider what happens if the user types a non�digit character� If the illegal
character occurs after some digits have been processed� e�g�	

��r

a manual trace reveals that the function will convert the number� ��� and return� If getint�� is
called again� the character� �r� will have been read from the bu�er so the next integer typed by
the user will be read and converted� �Note� this is di�erent than what scanf�� would do under
these circumstances�� This is reasonable behavior for getint��� so we need make no changes to
our code�

If no digits have been typed before an illegal character� e�g�	

� CHAPTER �� PROCESSING CHARACTER DATA

r ��

again� the character� �r� is not white space and not a digit� so getint�� will return �� As before�
a program calling getint�� cannot tell if the user entered zero or an error� It would be better if
we return an error condition in this case� but if we return ERROR� de�ned in charutil�h� we may
not be able to tell the di�erence between this error and EOF� The best solution to this problem is
to change the de�nition of ERROR to be �� instead of �
� This does not a�ect any other functions
that have used ERROR �such as dig to int��� since they only need a unique value to return as
an error condition� We can simply change the �define in charutil�h and recompile �see Figure
��

�� Finally� we must determine how to detect this error in getint��� As described above� we
must know whether or not we have begun converting an integer when the error occurred� We
can do this with a variable� called a �ag� which stores the state of the program� We have called
this �ag got digit �see Figure ��
��� and declare and initialize it to FALSE in getint��� If we
ever execute the digit loop body� we can set got digit to TRUE� Before returning� if got digit is
FALSE we should return ERROR� otherwise we return n�

All of these changes are shown in Figures ��

 and ��
�� Notice we have included the header
�le� tfdef�h from before in the �le charutil�c to include the de�nitions of TRUE and FALSE�
We have also modi�ed the test driver to read integers from the input until end of �le� �Only the
modi�ed versions of getint�� and the test driver�main�� are shown in Figure ��
�� The functions
dig to int�� and int to dig�� remain unchanged in the �le��

Our getint�� function is now more general and robust �i�e� can handle errors�� Of particular
note here is the method we used in developing this function� We started by writing the algorithm
and code to handle the normal case for input� We then considered what would happen in the
abnormal case� and made adjustments to the code to handle them only when necessary� This
approach to program development is good for utilities and complex programs	 get the normal
and easy cases working �rst� then modify the algorithm and code for unusual and complex cases�
Sometimes this approach requires us to rewrite entire functions to handle unusual cases� but often
little or no extra code is needed for these cases�

����� Counting Words

The next task we will consider is counting words in an input text �le �a �le of characters�� A word
is a sequence of characters separated by delimiters� namely� white space or punctuation� The �rst
word may or may not be preceded by a delimiter and we will assume the last word is terminated
by a delimiter�

Task

CNT	 Count the number of characters� words� and lines in the input stream until end of �le�

Counting characters and lines is simple	 a counter� chrs� can be incremented every time a
character is read� and a counter� lns� can be incremented every time a newline character is read�

���� SAMPLE CHARACTER PROCESSING FUNCTIONS

�

�� File� chrutil�h ��

�� This file contains various macros and prototypes for character processing ��

�define ERROR %�

�define IS(DIGIT�c� ��c� �� ��� �� �c� �� �	��

�define IS(LOWER�c� ��c� �� �a� �� �c� �� �z��

�define IS(WHITE(SPACE�c� ��c� �� � � ** �c� �� ��t� ** �c� �� ��n��

int dig(to(int�char ch�

char int(to(dig�int n�

char uppercase�char ch�

int getint��

Figure ��

	 Revised Character Utility Header File

Counting words requires us to know when a word starts and when it ends as we read the sequence
of characters� For example� consider the sequence	

Lucky luck

� � � �

We have shown the start and the end of a word by the symbol � There are several cases to
consider	

� As long as no word has started yet AND the next character read is a delimiter� no new word
has started�

� If no word has started AND the next character read is NOT a delimiter� then a new word
has just started�

� If a word has started AND the next character is NOT a delimiter� then the word is continuing�

� If a word has started AND the character read is a delimiter� then a word has ended�

We can talk about the state of our text changing from �a word has not started� to �a word has
started� and vice versa� We can use a variable� inword� as a �ag to keep track of whether a word
has started or not� It will be set to True if a word has started� otherwise� it will be set to False� If
inword is False AND the character read is NOT a delimiter� then a word has started� and inword

becomes True� If inword is True AND the new character read is a delimiter� then the word has
ended and inword becomes False� With this information about the state� we can count a word
either when it starts or when it ends� We choose the former� so each time the �ag changes from
False to True� we will increment the counter� wds� The algorithm is	

� CHAPTER �� PROCESSING CHARACTER DATA

�� File� chrutil�c ��

�� This file contains various utility functions for processing characters ��

�include �stdio�h�

�include �tfdef�h�

�include �chrutil�h�

�� Function reads the next integer from the input ��

int getint��

� int n � �

int got(dig � FALSE

signed char ch

ch � getchar��
 �� read next char ��

while �IS(WHITE(SPACE�ch�� �� skip white space ��

ch � getchar��

while �IS(DIGIT�ch�� � �� repeat as long as ch is a digit ��

n � n � "� � dig(to(int�ch�
 �� accumulate value in n ��

got(dig � TRUE

�ifdef DEBUG

printf��debug�getint� ch � �c�n�� ch�
 �� debug statement ��

printf��debug�getint� n � �d�n�� n�
 �� debug statement ��

�endif

ch � getchar��
 �� read next char ��

�

if�ch �� EOF� return EOF
 �� test for end of file ��

if��got(dig� return ERROR
 �� test for no digits read ��

return n
 �� otherwise return the result ��

�

�� Dummy test driver for character utilities ��

�� This driver will be removed after testing is complete ��

main��

� int x

printf�����Test Digit Sequence to Integer����n�n��

printf��Type a sequence of digits�n��

while��x � getint��� �� EOF�

printf��Integer � �d�n�� x�
 �� print value ��

�

Figure ��
�	 Revised Character Utility Code

���� SAMPLE CHARACTER PROCESSING FUNCTIONS

�

initialize all counters to zero� set inword to False

while the character read� ch� is not EOF

increment character count chrs

if ch is a newline

increment line count lns

if NOT inword AND ch is NOT delimiter

increment word count wds

set inword to True

else if inword and ch is delimiter

set inword to False

print results

We �rst count characters and newlines� After that� only changes in the state� inword� need to
be considered� otherwise we ignore the character and read in the next one� Each time the �ag
changes from False to True� we count a word� We will use a function delimitp�� that checks if a
character is a delimiter� i�e� if it is a white space or a punctuation� �The name delimitp stands
for �delimit predicate� because it tests is its argument is a delimiter and returns True or False��
White space and punctuation� in turn� will be tested by other functions� The code for the driver
is shown in Figure ��
��

After printing the program title� the counts are initialized	

lns � wds � chrs � �

Assignment operators associate from right to left so the rightmost operator is evaluated �rst� chrs
is assigned �� and the value of the assignment operation is �� This value� �� is then assigned to
wds� and the value of that operation is �� Finally� that value is assigned to lns� and the value of
the whole expression is �� Thus� the statement initializes all three variables to � as a concise way
of writing three separate assignment statements�

The program driver follows the algorithm very closely� The function delimitp�� is used to
test if a character is a delimiter and is yet to be written� Otherwise� the program is identical to
the algorithm� It counts every character� every newline� and every word each time the �ag inword

changes from False to True�

Source File Organization

We can add the source code for delimitp�� to the source �le charutil�c we have been building
with character utility functions� In the last section we wrote a dummy driver in that �le to test
our utilities� Since we would like to use these utilities in many di�erent programs� we should not
have to keep copying a driver into this �le� We will soon see how the code in charutil�c will be
made a part of the above program without combining the two �les into one �and without using the
�include directive to include a code �le�� In our program �le� cnt�c� we also include two header
�les besides stdio�h� These are	 tfdef�h which de�nes symbolic constants TRUE and FALSE� and

 CHAPTER �� PROCESSING CHARACTER DATA

�� Program File� cnt�c

Other Source Files� charutil�c

Header Files� tfdef�h� charutil�h

This program reads standard input characters and counts the number

of lines� words� and characters� All characters are counted including

the newline and other control characters� if any�

��

�include �stdio�h�

�include �tfdef�h�

�include �charutil�h�

main��

� signed char ch

int inword� �� flag for in a word ��

lns� wds� chrs
 �� Counters for lines� words� chars� ��

printf�����Line� Word� Character Count Program����n�n��

printf��Type characters� EOF to quit�n��

lns � wds � chrs � �
 �� initialize counters to � ��

inword � FALSE
 �� set inword flag to False ��

while ��ch � getchar��� �� EOF� � �� repeat while not EOF ��

chrs � chrs � "
 �� increment chrs ��

if �ch �� ��n�� �� if newline char ��

lns � lns � "
 �� increment lns ��

�� if not inword and not a delimiter ��

if ��inword �� �delimitp�ch�� � �� if not in word and not delim�� ��

inword � TRUE
 �� set inword to True ��

wds � wds � "
 �� increment wds ��

�

else if �inword �� delimitp�ch�� �� if in word and a delimiter��

inword � FALSE
 �� set inword to False ��

� �� end of while loop ��

printf��Lines � �d� Words � �d� Characters � �d�n��

lns� wds� chrs�

� �� end of program ��

Figure ��
�	 Code for Count Words Driver

���� SAMPLE CHARACTER PROCESSING FUNCTIONS

�

�� File� tfdef�h ��

�define TRUE "

�define FALSE �

�� File� charutil�h % continued

This file contains the prototype declarations for functions defined in

charutil�c�

��

int delimitp�char c�
 �� Tests if c is a delimiter �white space� punct� ��

int whitep�char c�
 �� Tests if c is a white space ��

int punctp�char c�
 �� Tests if c is a punctuation ��

Figure ��
�	 Header Files for Word Count

charutil�h which declares prototypes for the functions de�ned in charutil�c and any related
macros� Since we use these constants and functions in main��� we should include the header �les
at the head of our source �le� Figure ��
� shows the �le tfdef�h and the additions to charutil�h�

The function delimitp�� tests if a character is white space or punctuation� It uses two
functions for its tests	 whitep�� which tests if a character is white space� and punctp�� which
tests if a character is punctuation� �We could have also implemented these as macros� but chose
functions in this case�� All these functions are added to the source �le� charutil�c and are shown
in Figure ��
� This source �le also includes tfdef�h� and charutil�h because the functions in
the �le use the symbolic constants TRUE and FALSE de�ned in tfdef�h and the prototypes for
functions whitep�� and punctp�� declared in charutil�h are also needed in this �le�

The source code for the functions is simple enough� delimitp�� returns TRUE if the its param�
eter� c� is either white space or punctuation� whitep�� returns TRUE if c is either a space� newline�
or tab� and punctp�� returns TRUE if c is one of the punctuation marks shown� All functions
return FALSE if the primary test is not satis�ed�

Our entire program is now contained in the two source �les cnt�c and charutil�cwhich must
be compiled separately and linked together to create an executable code �le� Commands to do so
are implementation dependent� but on Unix systems� the shell command line is	

cc %o cnt cnt�c charutil�c

The command will compile cnt�c to the object �le� cnt�o� then compile charutil�c to the object
�le� charutil�o� and �nally link the two object �les as well as any standard library functions into
an executable �le� cnt as directed by the %o cnt option� �If �o option is omitted� the executable
�le will be called a�out�� For other systems� the commands are generally similar� for example�
compilers for many personal computers also provide an integrated environment which allows one
to edit� compile� and run programs� In such an environment� the programmer may be asked
to prepare a project �le listing all source �les� Once a project �le is prepared and the project

� CHAPTER �� PROCESSING CHARACTER DATA

�� File� charutil�c % continued ��

�include �tfdef�h�

�include �charutil�h�

�� Function returns TRUE if c is a delimiter� i�e�� it is a white space

or a punctuation� Otherwise� it returns FALSE�

��

int delimitp�char c�

�

if �whitep�c� ** punctp�c��

return TRUE

return FALSE

�

�� Function returns TRUE if c is white space
 returns FALSE otherwise� ��

int whitep�char c�

�

if �c �� ��n� ** c �� ��t� ** c �� � ��

return TRUE

return FALSE

�

�� Function returns TRUE if c is a punctuation
 returns FALSE otherwise� ��

int punctp�char c�

�

if �c �� ��� ** c �� ��� ** c �� �
� ** c �� ���

** c �� �
� ** c �� ����

return TRUE

return FALSE

�

Figure ��
�	 Code for Word Count Utility Functions

���� SAMPLE CHARACTER PROCESSING FUNCTIONS

�

option activated� a simple command compiles the source �les� links them into an executable �le�
and executes the program� Consult your implementation manuals for details� This technique of
splitting the source code for an entire program into multiple �les is called serarate compilation

and is a good practice as programs grow larger�

Once the above two �les� cnt�c and charutil�c are compiled and linked� the resulting program
may then be executed producing a sample session as shown below	

���Line� Word� Character Count Program���

Type characters� EOF to quit

Now is the time for all good men

To come to the aid of their country�
�D

Lines � �� Words � "!� Characters � #�

Henceforth� we will assume separate compilation of source code whenever it is spread over more
then one �le� Since main�� is the program driver� we will refer to the source �le that contains
main�� as the program �le� Other source �les needed for a complete program will be listed in
the comment at the head of the program �le� In the comment� we will also list header �les needed
for the program� Refer to cnt�c in Figure ��
� for an example of a listing which enumerates all
the �les needed to build or create an executable program� �The �le stdio�h is not listed since it
is assumed to be present in all source �les��

Header �les typically include groups of related symbolic constant de�nitions and�or prototype
declarations� Source �les typically contain de�nitions of functions used by one or more program
�les� We will organize our code so that a source �le contains the code for a related set of func�
tions� and a header �le with the same name contains prototype declarations for these functions�
e�g� charutil�c and charutil�h� As we add source code for new functions to the source �les�
corresponding prototypes will be assumed to be added in the corresponding header �les�

Separate compilation has several advantages� Program development can take place in separate
modules� and each module can be separately compiled� tested� and debugged� Once debugged�
a compiled module need not be recompiled but merely linked with other separately compiled
modules� If changes are made in one of the source modules� only that source module needs
recompiling and linking with other already compiled modules� Furthermore� compiled modules of
useful functions can be used and reused as building blocks to create new and diverse programs�
In summary� separate compilation saves compilation time during program development� allows
development of compiled modules of useful functions that may be used in many diverse programs�
and makes debugging easier by allowing incremental program development�

����� Extracting Words

The �nal task in this section extends the word count program to print each word in the input
stream of characters�

�� CHAPTER �� PROCESSING CHARACTER DATA

Task

WDS	 Read characters until end of �le and keep a count of characters� lines� and words� Also�
print each word in the input on a separate line�

The logic is very similar to that of the previous program� except that a character is printed
if it is in a word� i�e� if inword is True� We will decide whether to print a character only after
a possible state change of inword has taken place� That way when inword changes from False
to True �the �rst character of a word has been found� the character is printed� When inword

changes from from True to False �a delimiter has been found ending the word� it is not printed�
instead we print a newline because each word is to be printed on a new line� So our algorithm is	

initialize counts to zero� set inword to False

while the character read� ch� is not EOF

increment character count� chrs

if ch is a newline

increment line count� lns

if NOT inword AND ch is NOT delimiter

increment word count� wds

set inword to True

else if inword and ch is delimiter

set inword to False

print a newline

if inword

print ch

print results

and the code is shown in Figure ��

� This code was generated by simply copying the �le cnt�c

and making the necessary changes as indicated in the algorithm� The program �le is compiled
and linked with charutil�c� and the following sample session is produced�

Sample Session	

���Word Program���

Type characters� EOF to quit

Now is the time for all good men

Now

is

the

time

for

all

good

men

���� SAMPLE CHARACTER PROCESSING FUNCTIONS
�

�� Program File� wds�c

Other Source Files� charutil�c

Header Files� tfdef�h� charutil�h

This program reads standard input characters and prints each word on a

separate line� It also counts the number of lines� words� and characters�

All characters are counted including the newline and other control

characters� if any�

��

�include �stdio�h�

�include �tfdef�h�

�include �charutil�h�

main��

� signed char ch

int inword� �� flag for in a word ��

lns� wds� chrs
 �� Counters for lines� words� chars� ��

printf�����Line� Word� Character Count Program����n�n��

printf��Type characters� EOF to quit�n��

lns � wds � chrs � �
 �� initialize counters to � ��

inword � FALSE
 �� set inword flag to False ��

while ��ch � getchar��� �� EOF� � �� repeat while not EOF ��

chrs � chrs � "
 �� increment chrs ��

if �ch �� ��n�� �� if newline char ��

lns � lns � "
 �� increment lns ��

�� if not inword and not a delimiter ��

if ��inword �� �delimitp�ch�� � �� if not in word and not delim� ��

inword � TRUE
 �� set inword to True ��

wds � wds � "
 �� increment wds ��

�

else if �inword �� delimitp�ch�� � �� if in word and a delimiter��

inword � FALSE
 �� set inword to False ��

putchar���n��
 �� end word with a newline ��

�

if �inword� �� if in a word ��

putchar�ch�
 �� print the character ��

� �� end of while loop ��

printf��Lines � �d� Words � �d� Characters � �d�n��

lns� wds� chrs�

� �� end of program ��

Figure ��

	 Code fore extracting words

�� CHAPTER �� PROCESSING CHARACTER DATA

�D

Lines � "� Words � � Characters � ��

In this section we have seen several sample programs for processing characters as well as some
new programming techniques� in particular� splitting the source code for a program into �les of
related functions with separate compilation of each source code �le� The executable program is
then generated by linking the necessary object �les� In the next section� we turn our attention to
several new control constructs useful in character processing as well as in numeric programs�

��� New Control Constructs

Earlier in this chapter� we saw the use of a chain of if���else if constructs for a multiway deci�
sion� This is a common operation in programs so the C language provides an alternate multiway
decision capability	 the switch statement� In addition� two other control constructs are discussed
in this section	 the break and continue statements�

����� The switch Statement

In a switch statement� the value of an integer valued expression determines an alternate path to
be executed� The syntax of the switch statement is	

switch � �expression�� �statement�

Typically� the �statement� is a compound statement with case labels�

switch ��expression�� f
case �e� �� �stmt� �
case �e� �� �stmt� �
���
case �en�� �� �stmtn�� �
default� �stmtn �

g

Each statement� except the last� starts with a case label which consists of the keyword case

followed by a constant expression� followed by a colon� The constant expression� �whose value
must be known at compile time� is called a case expression� An optional default label is also
allowed after all the case labels� Executable statements appear after the labels as shown�

The semantics of the switch statement is as follows	 The expression� �expression� is evaluated
to an integer value� and control then passes to the �rst case label whose case expression value

���� NEW CONTROL CONSTRUCTS
��

matches the value of the switch expression� If no case expression value matches� control passes to
the statement with the default label� if present� This control �ow is shown in Figure ��
�� Labels
play no role other than to serve as markers for transferring control to the appropriate statements�
Once control passes to a labeled statement� the execution proceeds from that point and continues
to process each of the subsequent statements until the end of the switch statement�

As an example� we use the switch statement to write a function that tests if a character is a
vowel �the vowels are �a�� �e�� �i�� �o�� and �u� in upper or lower case�� If a character passed to this
function� which we will call vowelp�� �for vowel predicate�� is one of the above vowels� the function
returns True� otherwise� it returns False� We add the function to our �le charutil�c� and the code
is shown in Figure ��
�� If c matches any of the cases� control passes to the appropriate case label�
For many of these cases� the �stmt� is empty� and the �rst non�empty statement is the return

TRUE statement� which� when executed� immediately returns control to the calling function� If c is
not a vowel� control passes to the default label� where the return FALSE statement is executed�
While there is no particular advantage in doing so� the above function could be written with a
return statement at every case label to return TRUE� The function vowelp�� is much clearer and
cleaner using the switch statement than it would have been using nested if statements or an if

statement with a large� complex condition expression�

An Example� Encrypting Text

Remember� in a switch statement� control �ow passes to the statement associated with the match�
ing case label� and continues from there to all subsequent statements in the compound statement�
Sometimes this is not the desired behavior� Consider the task of encrypting text in a very simple
way� such as	

� Leave all characters except the letters unchanged�

� Encode each letter to be the next letter in a circular alphabet� i�e� �a� follows �z� and �A�

follows �Z��

We will use a function to print the next letter� The encrypt algorithm is simple enough	

read characters until end of file

if a char is a letter

print the next letter in the circular alphabet

else

print the character

Implementation is straight forward as shown in Figure ��
�� The program reads characters until
end of �le� Each character is tested to see if it is a letter using a function� letterp��� If it
is a letter� print next�� is called to print the next character in the alphabet� otherwise� the
character is printed as is� The function letterp�� checks if a character passed as an argument is
an alphabetic letter and returns True or False� The function is shown below and is added to our
utility �le� charutil�c �and its prototype is assumed to be added to the �le charutil�h��

�� CHAPTER �� PROCESSING CHARACTER DATA

���
��aaaaa��

��
�a
a

a
aa

��
���aa
aaa��

��
�a
aa

aa

��
���aa
aaa�

��
��
a
aa

aa

�

�

�

�

�

�

�

�

�

�

�

�

�

�

expression

e�

e�

en��

stmt�

stmt�

stmtn��

stmtn

� � �

match

no match

match

match

no match

no match

Figure ��
�	 Control Flow for switch statement

���� NEW CONTROL CONSTRUCTS
��

�� File� charutil�c % continued ��

�� File tfdef�h� which defines TRUE and FALSE� has already been

included in this file� ��

�� Function checks if c is a vowel� ��

int vowelp�char c�

�

switch�c� �

case �a��

case �A��

case �e��

case �E��

case �i��

case �I��

case �o��

case �O��

case �u��

case �U�� return TRUE

default� return FALSE

�

�

Figure ��
�	 Code for vowelp�� Using a switch Statement

�
 CHAPTER �� PROCESSING CHARACTER DATA

�� File� encrypt�c

Other Source Files� charutil�c

Header Files� charutil�h

This program encrypts text by converting each letter to the next letter

in the alphabet� The last letter of the alphabet is changed to the first

letter�

��

�include �stdio�h�

�include �charutil�h�

void print(next�char c�

main��

� signed char c

printf�����Text Encryption����n�n��

printf��Type text� EOF to quit�n��

while ��c � getchar��� �� EOF� �

if �letterp�c��

print(next�c�

else

putchar�c�

�

�

Figure ��
�	 Code for encrypt�c

���� NEW CONTROL CONSTRUCTS
��

�� File� charutil�c % continued ��

�� Function tests if c is an alphabetic letter� ��

int letterp�char c�

�

if �IS(LOWER�c� ** IS(UPPER�c��

return TRUE

return FALSE

�

It uses the macros IS LOWER�� and IS UPPER��� We have already de�ne IS LOWER�� in charutil�h�
IS UPPER�� is similar	

�define IS(UPPER�c� ��c� �� �A� �� �c� �� �Z��

and is added to charutil�h�

Let us consider the function� print next��� which is passed a single alphabetic letter as an
argument� It should print an altered letter� that is the next letter in a circular alphabet� The
altered letter is the next letter in the alphabet� unless the argument is the last letter in the
alphabet� If the argument is �z� or �Z�� then the altered letter is the �rst letter of the alphabet�
�a� or �A� respectively� There are two possible instances of the character c for which we must
take special action� viz� when c is �z� or c is �Z�� The default case is any other letter� when the
function should print c � "� which is the ASCII value of the next letter�

We need a three way decision based on the value of a character c	 is c the character �z�� or
�Z�� or some other character� If it is �z� print �a�� else if it is �Z� print �A�� otherwise� print c
� "� We can easily implement this multiway decision using an if ��� else ��� construct�

if �c �� �z��

printf���c�� �a��

else if �c �� �Z��

printf���c�� �A��

else

printf���c�� c � "�

Such multiway branches can also be implemented using the switch construct� Suppose we wrote	

switch�c� �

case �z�� printf���c�� �a��

case �Z�� printf���c�� �A��

default� printf���c�� c � "�

Will this do what we want� If c has the value �z�� the above switch statement would match
the �rst case label and print �a�� However� by the semantics of switch� it would then print �A�
followed by �f� �the character after �z� in the ASCII table� � not what we want� Can we salvage
this approach to multiway branching�

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� encrypt�c % continued ��

�� Prints the next higher letter to c� Alphabet is assumed circular� ��

void print(next�char c�

�

switch�c� �

case �z�� printf���c�� �a��

break

case �Z�� printf���c�� �A��

break

default� printf���c�� c � "�

�

�

Figure ����	 Implementing print next�� Using a switch Statement

����� The break Statement

C provides a statement for circumstances like this� the break statement� A break can only be
used within a switch statement or any looping statement �so far we have only seen while�� Its
syntax is very simple	

break�

The semantics of break are to immediately terminate the closest enclosing compound statement�
either the switch or the loop�

To �x our problem above� Figure ���� shows an implementation of print next�� using a
switch statement� Once control passes to a label� the control continues down the line of statements
until the break statement is encountered� In the above case� if c is �Z�� then an �A� is printed
and the switch statement is terminated� Similarly� if c is �z�� then �a� is printed and the control
passes to the next statement after the switch� If there is no match� then the control passes to the
default label� and a character with value c � " is printed� The switch statement ends at this
point anyway� so no break is required�

Here is a sample session with the program after encrypt�c and charutil�c are compiled and
linked�

���Text Encryption���

Type text� EOF to quit

this is a test

uijt jt b uftu

�D

���� NEW CONTROL CONSTRUCTS
��

�� Function prints a character� its decimal� octal� and hex value

and its category� using a switch statement

��

int print(category� int cat� char ch�

�

printf���c� ASCII value decimal �d� octal �o� hexadecimal �x� ��

ch�ch�ch�ch�

switch�cat� �

case LOWER� printf��lower case letter�n��

break

case UPPER� printf��an upper case letter�n��

break

case DIGIT� printf��a digit symbol�n��

break

case PUNCT� printf��a punctuation symbol�n��

break

case SPACE� printf��a space character�n��

break

case CONTROL� printf��a control character�n��

break

default� printf��a special symbol�n��

�

�

Figure ���
	 New Implementation of print category using switch

This use of the switch statement with break statements in the various cases is a common and
e�cient way to implement a multiway branch in C� For example� we can now reimplement our
print category�� function from Figure ��� as shown in Figure ���
�

As mentioned above� the break statement can also be used to terminate a loop� Let us
consider our previous word extraction task	 reading text input and printing each word in the text
�see Figure ��

�� However� now we will consider non�printable characters other than white space
and the end of �le marker as invalid� They will represent an error in the input and we will use a
break statement to abort the program�

For this task� we will no longer count characters� words� and lines� simply extract words and
print them� one per line� In our previous algorithm� each iteration of the loop processed one
character and we used a �ag variable� inword to carry information from one iteration to the next�
For this program we will modify our algorithm so that each iteration of the loop will process
one word� Each word is found by �rst skipping over leading delimiters� then� as long as we read
printable� non�delimiter characters� we can print the word� The character terminating the word
must be a delimiter unless it is a non�printable character or we have reached the end of �le� In
either of those cases� we abort the program� printing a message if a non�printable character was
encountered� Otherwise� we print the newline terminating the word and process the next word�

�� CHAPTER �� PROCESSING CHARACTER DATA

Here is the revised algorithm with the code shown in Figure �����

while there are more characters to read

skip over leading delimiters �white space�

while character is legal for a word

print character

read next character

if EOF� terminate the program

if character is non%printable�

print a message and abort the program

print a newline ending the word

The program uses two functions	 delimitp�� tests if the argument is a delimiter� and illegal��
tests if the argument is not a legal character �printable or a delimiter�� They are in the source
�le charutil�c� their prototypes are in charutil�h� We have already de�ned delimitp�� �see
Figure ��
��� We will soon write illegal���

In the main loop� we skip over leading delimiters with a while loop� and then� as long legal
�word� characters are read we print and read characters� If either of these loops terminates with
EOF� the loop is terminated by a break statement and the program ends� �Note� if EOF is detected
while skipping delimiters� the word processing loop will be executed zero times�� If a non�printable�
non�delimiter character is found� the program is aborted after a message is printed to that e�ect�
Otherwise� the word is ended with a newline and the loop repeats�

Function illegal�� is easy to write	 legal characters are printable �in the ASCII range ��
through
�
� or white space� Here is the function and its prototype�

�� File� charutil�c % continued

Header Files� tfdef�h� charutil�h

��

�� Function tests if c is printable� ��

int illegal�char c�

�

if �IS(PRINT�c� ** IS(WHITE(SPACE�c��

return FALSE

return TRUE

�

�� File� charutil�h % continued ��

�define IS(PRINT�c� ��c� �� �� �� �c� � "�#�

int illegal�char c�
 �� Tests if c is legal� ��

We have also added the macro IS PRINT to the header �le� The program �le words�c and the
source �le charutil�c can now be compiled and linked� A sample session when the program is

���� NEW CONTROL CONSTRUCTS
�

�� File� words�c

Other Source Files� charutil�c

Header Files� tfdef�h� charutil�h

This program reads text and extracts words until end of file� Only

printable characters are allowed in a word� Upon encountering a control

character� a message is printed and the program is aborted�

��

�include �stdio�h�

�include �tfdef�h�

�include �charutil�h� �� includes prototypes for delimitp��� printp�� ��

main��

� signed char ch

printf�����Words� Non%Printable Character Aborts����n�n��

printf��Type text� EOF to quit�n��

while ��ch � getchar��� �� EOF� � �� while characters remain to be read ��

while �delimitp�ch�� �� skip over leading delimiters ��

ch � getchar��

while ��delimitp�ch� �� printp�ch�� � �� process a word ��

putchar�ch�
 �� print ch ��

ch � getchar��
 �� read the next char ��

�

if �ch �� EOF� �� if end of file� terminate ��

break

if �illegal�ch�� ��� if a control char� print msg and abort ��

printf���nAborting % Control character present� ASCII �d�n��ch�

break

�

printf���n��
 �� terminate word with newline ��

�

�

Figure ����	 Extracting Words Using break

�� CHAPTER �� PROCESSING CHARACTER DATA

executed is shown below�

���Words� Non%Printable Character Aborts���

Type text� EOF to quit

Lucky you live H�Awaii�A

Lucky

you

live

H

Aborting % Control character present� ASCII "

The message shows that the program is abnormally terminated due to the presence of a control
character�

It is also possible� though not advisable� to use a break statement to terminate an otherwise
in�nite loop� Consider the program fragment	

n � �

while �"� �

n � n � "

if �n � �� break

printf��Hello� hello� hello�n��

�

printf��Print statement after the loop�n��

The loop condition is the constant
� which is always True so the loop body will be repeatedly
executed� n will be incremented� and the message printed� until n reaches �� The condition �n �

�� will now be True� and the break statement will be executed� This will terminate the while

loop� and control passes to the print statement after the loop� If the if statement containing the
break statement were not present� the loop would execute inde�nitely�

While it is possible to use a break statement to terminate an in�nite loop� it is not a good
practice because use of in�nite loops makes program logic hard to understand� In a well structured
program� all code should be written so that program logic is clear at each stage of the program� For
example� a loop should be written so that the normal loop terminating condition is immediately
clear� Otherwise� program reading requires wading through the detailed code to see how and when
the loop is terminated� A break statement should be used to terminate a loop only in cases of
special or unexpected events�

����� The continue Statement

A continue statement also changes the normal �ow of control in a loop� When a continue

statement is executed in a loop� the current iteration of the loop body is aborted� however� control

���� NEW CONTROL CONSTRUCTS
��

transfers to the loop condition test and normal loop processing continues� namely either a new
iteration or a termination of the loop occurs based on the loop condition� As might be expected�
the syntax of the continue statement is�

continue�

and the semantics are that statements in the loop body following the execution of the continue

statement are not executed� Instead� control immediately transfers to the testing of the loop
condition�

As an example� suppose we wish to write a loop to print out integers from � to �� except for
�� We could use the continue statement as follows	

n � �

while �n � "�� �

if �n �� $� �

n � n � "

continue

�

printf��Next allowed number is �d�n�� n�

n � n � "

�

The loop executes normally except when n is �� In that case� the if condition is True� n is
incremented� and the continue statement is executed where control passes to the testing of the
loop condition� �n � "��� Loop execution continues normally from this point� Except for �� all
values from � through � will be printed�

We can modify our previous text encryption algorithm �Figure ��
�� to ignore illegal characters
in its input� Recall� in that task we processed characters one at a time� encrypting letters and
passing all other characters as read� In this case we might consider non�printable characters other
than white space to be typing errors which should be ignored and omitted from the output�

The code for the revised program is shown in Figure ����� We have used the function�
illegal��� from the previous program �it is in charutil�c� to detect illegal characters� When
found� the continue statement will terminate the loop iteration� but continue processing the
remaining characters in the input until EOF�

Sample Session	

���Text Encryption Ignoring Illegal Characters���

Type text� EOF to quit

Luck you live H�Awaii

Mvdl zpv mjjwf Ixbjj

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� encrypt��c

Other Source Files� charutil�c

Header Files� charutil�h

This program encrypts text by converting each letter to the next letter

in the alphabet� Illegal characters are ignored�

��

�include �stdio�h�

�include �charutil�h�

void print(next�char c�

main��

� signed char c

printf�����Text Encryption Ignoring Illegal Characters����n�n��

printf��Type text� EOF to quit�n��

while ��c � getchar��� �� EOF� � �� while there are chars to process ��

if �illegal�c�� continue
 �� ignore illegal characters ��

if �letterp�c�� �� encrypt letters ��

print(next�c�

else

putchar�c�
 �� print all others as is ��

�

�

Figure ����	 Code for Revised encrypt�c

���� MIXING CHARACTER AND NUMERIC INPUT
��

�� File� scan��c

This program shows problems with scanf�� when wrong data is entered�

��

�include �stdio�h�

main��

� int cnt� n

printf�����Numeric and Character Data����n�n��

printf��Type integers� EOF to quit� ��

cnt � �

while ��scanf���d�� �n� �� EOF� �� �cnt � ��� �

printf��n � �d�n�� n�

cnt � cnt � "

printf��Type an integer� EOF to quit� ��

�

�

Figure ����	 Code for Testing scanf��

�D

It should be noted that the use of break and continue statements is not strictly necessary�
Proper structuring of the program� using appropriate loop and if���else constructs� can produce
the same e�ect� The break and continue statements are best used for �unusual� conditions that
would make program logic clearer�

��� Mixing Character and Numeric Input

We have seen how numeric data can be read with scanf�� and character data with either scanf��
or getchar��� Some di�culties can arise� however� when both numeric and character input is done
within the same program� Several common errors in reading data can be corrected easily if the
programmer understands exactly how data is read� In this section� we discuss problems in reading
data and how they can be resolved�

The �rst problem occurs when scanf�� attempts to read numeric data but the user enters the
data incorrectly� �While the discussion applies to reading any numeric data� we will use integer
data for our examples�� Consider an example of a simple program that reads and prints integers as
shown in Figure ����� In this program� scanf�� reads an integer into the variable n �if possible�
and returns a value which is compared with EOF� If scanf�� has successfully read an integer�

�
 CHAPTER �� PROCESSING CHARACTER DATA

the value returned is the number of conversions performed� namely
� and the loop is executed�
Otherwise� the value returned is expected to be EOF and the loop is terminated� The the �rst part
of the while condition is	

�scanf���d�� �n� �� EOF�

This expression both reads an item and compares the returned value with EOF� eliminating separate
statements for initialization and update� The second part of the while condition ensures that the
loop is executed at most � times� �The reason for this will become clear soon�� The loop body
prints the value read and keeps a count of the number of times the loop is executed� The program
works �ne as long as the user enters integers correctly� Here is a sample session that shows the
problem when the user makes a typing error	

���Mistyped Numeric Data���

Type integers� EOF to quit� ��r
n � ��

Type an integer� EOF to quit� n � ��

Type an integer� EOF to quit� n � ��

Type an integer� EOF to quit� n � ��

The user typed ��r� These characters and the terminating newline go into the keyboard bu�er�
scanf�� skips over any leading white space and reads characters that form an integer and converts
them to the internal form for an integer� It stops reading when the �rst non�digit is encountered�
in this case� the �r�� It stores the integer value� ��� in n and returns the number of items read�
i�e�
� The �rst integer� ��� is read correctly and printed � followed by a prompt to type in the
next integer�

At this point� the program does not wait for the user to enter data� instead the loop repeatedly
prints �� and the prompt but does not read anything� The reason is that the next character in
the keyboard bu�er is still �r�� This is not a digit character so it does not belong in an integer�
therefore� scanf�� is unable to read an integer� Instead� scanf�� simply returns the number of
items read as � each time� Since scanf�� is trying to read an integer� it can not read and discard
the �r�� No more reading of integers is possible as long as �r� is the next character in the bu�er�
If the value of the constant EOF is �
 �not ��� an in�nite loop results� �That is why we have included
the test of cnt to terminate the loop after � iterations��

Let us see how we can make the program more tolerant of errors� One solution to this problem
is to check the value returned by scanf�� and make sure it is the expected value� i�e�
 in our
case� If it is not� break out of the loop� The while loop can be written as	

while ��flag � scanf���d�� �n�� �� EOF� �

if �flag �� "� break

printf��n � �d�n�� n�

���� MIXING CHARACTER AND NUMERIC INPUT
��

printf��Type an integer� EOF to quit�n��

�

In the while expression� the inner parentheses are evaluated �rst� The value returned by scanf��

is assigned to flag which is the value that is then compared to EOF� If the value of the expression
is not EOF� the loop is executed� otherwise� the loop is terminated� In the loop� we check if a data
item was read correctly� i�e� if flag is
� If not� we break out of the loop� The inner parentheses
in the while expression are important� the while expression without them would be	

�flag � scanf���d�� �n� �� EOF�

Precedence of assignment operator is lower than that of the relational operator� � �� so� the
scanf�� value is �rst compared with EOF and the result is True or False� i�e�
 or �� This value is
then assigned to flag� NOT the value returned by scanf���

The trouble with the above solution is that the program is aborted for a simple typing error�
The next solution is to �ush the bu�er of all characters up to and including the �rst newline� A
simple loop will take care of this	

while ��flag � scanf���d�� �n�� �� EOF� �

if �flag �� "�

while �getchar�� �� ��n��

else �

printf��n � �d�n�� n�

printf��Type an integer� EOF to quit�n��

�

�

If the value returned by scanf�� when reading an integer is not
� then the inner while loop is
executed where� as long as a newline is not read� the condition is True and the body is executed�
In this case� the loop body is an empty statement� so the condition will be tested again thus
reading the next character� The loop continues until a newline is read� This is called �ushing

the bu�er�

The trouble with this approach is that the user may have typed other useful data on the same
line which will be �ushed� The best solution is to �ush only one character and try again� If
unsuccessful� repeat the process until an item is read successfully� Figure ���� shows the revised
program that will discard only those characters that do not belong in a numeric data item�

Sample Session	

���Mistyped Numeric Data� Flush characters���

Type integers� EOF to quit

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� scan"�c

This program shows how to handle mistyped numeric data by flushing

erroneous characters�

��

�include �stdio�h�

�define DEBUG

main��

� char ch

int flag� n

printf�����Mistyped Numeric Data� Flush characters����n�n��

printf��Type integers� EOF to quit�n��

while ��flag � scanf���d�� �n�� �� EOF� �

if �flag �� "� �

ch � getchar��
 �� flush one character ��

�ifdef DEBUG

printf��debug��c in input stream� discarding�n�� ch�

�endif

�

else printf��n � �d�n�� n�

printf��Type an integer� EOF to quit�n��

�

�

Figure ����	 Revised Code for Reading Integers

���� MIXING CHARACTER AND NUMERIC INPUT
��

��rt ��

n � ��

Type an integer� EOF to quit

debug�r in input stream� discarding

Type an integer� EOF to quit

debug�t in input stream� discarding

Type an integer� EOF to quit

n � ��

Type an integer� EOF to quit

�D

The input contains several characters that do not belong in numeric data� Each of these is
discarded in turn and another attempt is made to read an integer� If unable to read an integer�
another character is discarded� This continues until it is possible to read an integer or the end of
�le is reached�

Even if the user types data as requested� other problems can occur with scanf��� The second
problem occurs when an attempt is made to read a character after reading a numeric data item�
Figure ���
 shows an example which reads an integer and then asks the user if he�she wishes to
continue� If the user types �y�� the next integer is read� otherwise� the loop is terminated� This
program produces the following sample session	

���Numeric and Character Data���

Type an integer

��nn
n � ��

Do you wish to continue
 �Y�N�� debug�

in input stream

The sample session shows that an integer input is read correctly and printed� the prompt to the
user is then printed� but the program does not wait for the user to type the response� A newline
is printed as the next character read� and the program terminates� The reason is that when the
user types the integer followed by a RETURN� the digit characters followed by the terminating
newline are placed in the keyboard bu�er �we have shown the nn explicitly�� The function scanf��

reads the integer until it reaches the newline character� but leaves the newline in the bu�er� This
newline character is then read as the next input character into c� Its value is printed and the loop
is terminated since the character read is not �y��

A simple solution is to discard a single delimiting white space character after the numeric data
is read� C provides a suppression conversion speci�er that will read a data item of any type and
discard it� Here are some examples	

scanf����c��
 �� read and discard a character ��

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� mix��c

This program shows problems reading character data when it follows

numeric data�

��

�include �stdio�h�

�define DEBUG

main��

� char ch

int flag� n

printf�����Numeric and Character Data����n�n��

printf��Type an integer�n��

while ��flag � scanf���d�� �n�� �� EOF� � �� continue until EOF ��

printf��n � �d�n�� n�
 �� print n ��

printf��Do you wish to continue
 �Y�N�� ��
 �� prompt ��

scanf���c�� �ch�
 �� read a character� ��

�ifdef DEBUG

printf��debug��c in input stream�n�� ch�
 �� type its value ��

�endif

if �ch �� �y�� �� if char is �y� ��

printf��Type an integer�n��
 �� prompt ��

else �� otherwise� ��

break
 �� terminate loop ��

�

�

Figure ���
	 Mixing Numeric and Character Data

���� MIXING CHARACTER AND NUMERIC INPUT
�

scanf����d��
 �� read and discard an integer ��

scanf���d��c�� �n�
 �� read an integer and store it in n� ��

�� then read and discard a character ��

scanf����c�c�� �ch�
 �� read and discard a character� ��

�� and read another� store it in ch� ��

Figure ���� shows the revised program that discards one character after it reads an integer�

This program produces the following sample session	

���Numeric and Character Data���

Type an integer

��nn
n � ��

Do you wish to continue
 �Y�N�� ynn
debug�y in input stream

Type an integer

�� nn
n � ��

Do you wish to continue
 �Y�N�� debug� in input stream

We have shown the terminating newline explicitly in the sample session input� The �rst integer
is read and printed� one character is discarded and the next one read correctly as �y� and the
loop repeats� The next integer is typed followed by some white space and then a newline� The
character after the integer is a space which is discarded and the following character is read� The
new character read is another space� and the program is terminated because it is not a �y��

The solution is to �ush the entire line of white space until a newline is reached� Then the next
character should be the correct response� The revised program is shown in Figure ���� and the
sample session is below	

���Numeric and Character Data���

Type an integer

�� nn
n � ��

Do you wish to continue
 �Y�N�� y nn
debug�y in input stream

Type an integer

�� nn
n � ��

Do you wish to continue
 �Y�N�� n nn
debug�n in input stream

�� CHAPTER �� PROCESSING CHARACTER DATA

�� File� mix"�c

This program shows how character data might be read correctly when it

follows numeric data� It assumes only one white space character

terminates numeric data� This character is suppressed�

��

�include �stdio�h�

�define DEBUG

main��

� char ch

int flag� n

printf�����Numeric and Character Data����n�n��

printf��Type an integer�n��

while ��flag � scanf���d�� �n�� �� EOF� �

printf��n � �d�n�� n�

printf��Do you wish to continue
 �Y�N�� ��

scanf����c�c�� �ch�
 �� suppress a character� read another ��

�ifdef DEBUG

printf��debug��c in input stream�n�� ch�

�endif

if �ch �� �y��

printf��Type an integer�n��

else

break

�

�

Figure ����	 Revised Code for Mixing Data

���� MIXING CHARACTER AND NUMERIC INPUT
��

�� File� mix��c

This program shows how character data can be read correctly when it

follows numeric data even if several white space characters follow

numeric data�

��

�include �stdio�h�

�define DEBUG

main��

� char ch

int flag� n

printf�����Numeric and Character Data����n�n��

printf��Type an integer�n��

while ��flag � scanf���d�� �n�� �� EOF� �

printf��n � �d�n�� n�

�� flush white space characters in a line
 stop when newline read ��

while �getchar�� �� ��n��

printf��Do you wish to continue
 �Y�N�� ��

scanf���c�� �ch�

�ifdef DEBUG

printf��debug��c in input stream�n�� ch�

�endif

if �ch �� �y��

printf��Type an integer�n��

else

break

�

�

Figure ����	 A Better Revision for Mixing Data

�� CHAPTER �� PROCESSING CHARACTER DATA

The �rst integer is read and printed� the keyboard bu�er is �ushed of all white space until the
newline is read� and the next character is read to decide whether to continue or terminate the
loop� The next character input is also terminated with white space� however� the next item to be
read is a number and all leading white space will be skipped�

A �nal alternative might be to terminate the program only when the user types an �n��
accepting any other character as a �y�� This would be a little more forgiving of user errors in
responding to the program� One should also be prepared for mistyping of numeric data as discussed
above� A programmer should anticipate as many problems as possible� and should assume that a
user may not be knowledgeable about things such as EOF keystrokes� will be apt to make mistakes�
and will be easily frustrated with rigid programs�

��� Menu Driven Programs

Finally� we end this chapter by using what we have learned to improve the user interface to
programs	 we consider the case of a program driven by a menu� In a menu driven program� the
user is given a set of choices of things to do �the menu� and then is asked to select a menu item�
The driver then calls an appropriate function to perform the task selected by the menu item� A
switch statement seems a natural one for handling the selection from the menu�

We will modify the simple version of our payroll program to make it menu driven� While a
menu is not needed in this case� we use it to illustrate the concept� The menu items are	 get data�
display data� modify data� calculate pay� print pay� help� and quit the program� The user selects a
menu item to execute a particular path� for example� new data is read only when the user selects
the menu item� get data� On demand� the current data can be displayed so the user may make
any desired changes� Pay is calculated only when the user is satis�ed with the data�

Figure ���� shows the driver for this program� �The driver of any menu driven program will
look similar to this�� The program prints the menu and then reads a selection character� A
switch is used to select the path desired by the user� The user may type a lower or an upper
case letter� both cases are included by the case labels� Usually� the driver hides the details of
processing individual selections� so we have implemented most selections as function calls� The
only exception here is when the selection is get data where the actual statements to read the
necessary data are included in the driver itself because to use a function� it would have to read
several items and somehow return them� So far we only know how to write functions that return
a single value� We will address this matter in Chapter
�

Notice what happens if the user elects to quit the program	 a standard library function� exit���
is called� This function is like a return statement� except that it terminates the entire program
rather than return from a function� It may be passed a value which is returned to the environment

in which the program runs� A value of � usually implies normal termination of a program� any
other value implies abnormal termination�

After the appropriate function is called� we terminate the selected case with a break statement
to end the switch statement � The control then passes to the statement after the switch state�

���� MENU DRIVEN PROGRAMS
��

�� File� menu�c

An example of a menu driven program� The main�� driver prints the menu�

reads the selected item� and performs an appropriate task� ��

�include �stdio�h�

�include �payroll�h�

main��

� signed char c

int id

float hours(worked� rate(of(pay� pay

printf�����Pay Calculation� Menu Driven����n�n��
 �� print title ��

print(menu��
 �� Display the menu to the user ��

while ��c � getchar��� �� EOF� � �� get user selection ��

switch�c� � �� select an appropriate path ��

case �g�� �� should be a function get(data�� ��

case �G�� printf��Id number� ��

scanf���d�� �id�

printf��Type Hours worked and rate of pay�n��

scanf���f �f�� �hours(worked� �rate(of(pay�

break

case �d��

case �D�� display(data�id� hours(worked� rate(of(pay�

break

case �m��

case �M�� modify(data��

break

case �c��

case �C�� pay � calc(pay�hours(worked� rate(of(pay�

break

case �p��

case �P�� display(data�id� hours(worked� rate(of(pay�

print(pay�pay�

break

case �h��

case �H�� print(menu��

break

case �q��

case �Q�� exit���

default� printf��Invalid selection�n��

print(menu��

� �� end of switch ��

while ��c � getchar��� �� ��n��
 �� flush the buffer ��

� �� end of while loop ��

� �� end of program ��

Figure ����	 Code for menu driven program

�
 CHAPTER �� PROCESSING CHARACTER DATA

ment� namely �ushing the bu�er� Let us see what would happen if this �ush were not present�
The user selects an item by typing a character and must terminate the input with a newline� The
keyboard bu�er will retain all characters typed by the user� including the newline� So if the user
types	

dnn

�showing the newline explicitly�� the program would read the character� �d�� select the appropriate
case in the switch statement and execute the path which displays data� When the break ends
the switch� control returns to the while expression which reads the next character in the bu�er	
the newline� Since newline is not one of the listed cases� the switch will choose the default case
and print an error message to the user� Thus� �ushing the keyboard bu�er always obtains a new
selection� In fact� even if the user typed more than a single character to select a menu item �such
as an entire word�� the bu�er will be �ushed of all remaining characters after the �rst�

As we have mentioned before� a large program should be developed incrementally� i�e� in small
steps� The overall program logic consisting of major sub�tasks is designed �rst without the need
to know the details of how these sub�tasks will be performed� Menu driven programs are partic�
ularly well suited for incremental development� Once the driver is written� �dummy� functions
�sometimes called stubs� can be written for each task which may do nothing but print a debug
message to the screen� Then each sub�task is implemented and tested one at a time� Only after
some of the basic sub�tasks are implemented and tested� should others be implemented� At any
given time during program development� many sub�task functions may not yet be implemented�
For example� we may �rst implement only get data� print data� and help �help is easy to implement�
it just prints the menu�� Other sub�tasks may be delayed for later implementation� Figure ����
shows example implementations of the functions used in the above driver� These are in skeleton
form and can be modi�ed as needed without changing the program driver� It should be noted
that the linker will require that all functions used in the driver be de�ned� The stubs satisfy the
linker without having to write the complete function until later�

The use of a menu in this example is not very practical� It is merely for illustration of the
technique� The menu is normally printed only once� so if the user forgets the menu items� he�she
may ask for help� in which case the menu is printed again� Also� if the user types any erroneous
character� the default case prints an appropriate message and prints the menu�

��� Common Errors

� Errors in program logic	 The program does not produce the expected results during testing�
Use conditional compilation to introduce debug statements�

�� The value of getchar�� is assigned to a char type� It should be assigned to a signed char

type if it is to be checked for a possibly negative value of EOF�

�� The keyboard bu�er is not �ushed of erroneous or unnecessary characters as explained in
Section ����

���� COMMON ERRORS
��

�� File� payroll�c ��

�� Prints the menu� ��

void print(menu�void�

� �� print the menu ��

printf��Select��n��

printf���tG�et Data�n��

printf���tD�isplay Data�n��

printf���tM�odify Data�n��

printf���tC�alculate Pay�n��

printf���tP�rint Pay�n��

printf���tH�elp�n��

printf���tQ�uit�n��

�

�� Displays input data� Id number� hours worked� and rate of pay� ��

void display(data�int id� float hrs� float rate�

�

printf��Id Number �d�n�� id�

printf��Hours worked �f�n�� hrs�

printf��Rate of pay �f�n�� rate�

�

�� Calculates pay as hrs � rate ��

�� a very simple version of calc(pay� Out previous implementation

could be used here instead�

��

float calc(pay�float hrs� float rate�

�

return hrs � rate

�

�� Modifies input data� ��

void modify(data�void�

�

printf��Modify Data not implemented yet�n��

�

�� Prints pay ��

void print(pay�float pay�

�

printf��Total pay � �f�n�� pay�

�

Figure ����	 Menu Driven Functions

�� CHAPTER �� PROCESSING CHARACTER DATA

�� Improper use of relational operators	

if ��a� �� ch �� �z�� �� should be ��a� �� ch �� ch �� �z�� ��

���

The operators are evaluated left to right	 �a� �� ch is either True or False� i�e�
 or ��
This value is compared with �z� and the result is always True�

�� An attempt is made to read past the end of the input �le� If the standard input is the
keyboard� it may or may not be possible to read input once the end of �le keystroke is
pressed� If the standard input is redirected� it is NOT possible to read beyond the end of
�le�

� A break statement is not used in a switch statement� When a case expression matches the
switch expression� control passes to that case label and control �ow continues until the end
of the switch statement� The only way to terminate the �ow is with a break statement�
Here is an example	

char find(next�char c�

� char next

switch�c� �

case �z�� next � �a�

default� next � c � "

�

return next

�

Suppose c is �z�� The variable next is assigned an �a� and control passes to the next
statement which assigns c � " to next� In fact� the function always returns c � " no
matter what c is�

�� Errors in de�ning macros� De�ne macros carefully with parentheses around macro formal
parameters� If the actual argument in a macro call is an expression� it will be expanded
correctly only if the macro is de�ned with parentheses around formal parameters�

�� A header �le is not included in each of the source �les that use the prototypes and�or macros
de�ned in it�

�� Repeated inclusion of a header �le in a source �le� If the header �le contains de�nes� there
is no harm done� BUT� if the header �le contains function prototypes� repeated inclusion is
an attempt to redeclare functions� a compiler error�

�� Failure to set environment parameters� such as the standard include �le directory� standard
library directory� and so forth� Most systems may already have the environment properly set�
but that may not be true in personal computers� If necessary� make sure the environment is
set correctly� Also� make sure that the compile and link commands correctly specify all the
source �les�

��
� SUMMARY
��

��	 Summary

In this chapter we have introduced a new data type� char� used to represent textual data in the
computer� Characters are represented using a standard encoding� or assignment of a bit pattern to
each character in the set� This encoding is called ASCII and includes representations of several
classes of characters such as alphabetic characters �letters� both upper and lower case�� digit
characters� punctuation� space� other special symbols� and control characters� We have seen how
character variables can be declared using the char keyword as the type speci�er in a declaration
statement� and how character constants are expressed in the program� namely by enclosing them
in single quotes� e�g� �a�� The ASCII value of a character can be treated as an integer value�
so we can do arithmetic operations using character variables and constants� For example� we
have discussed how characters can be tested using relational operators to determine their class�
how characters can be converted� for example from upper to lower case� or from a digit to its
corresponding integer value�

We have also discussed character Input�Output using scanf�� and printf�� with the �c

conversion speci�er� or the getchar�� and putchar�� routines de�ned in stdio�h� We have used
these routines and operations to write several example programs for processing characters and
discussed the organization of program code into separate source �les� This later technique allows
us to develop our own libraries of utility functions which can be linked to various programs� further
supporting our modular programming style�

In this chapter we have also introduced several new control constructs available in the C
language� These include the switch statement	

switch � �expression�� �statement�

where the �statement� is usually a compound statement with case labels�

switch ��expression�� f
case �e� �� �stmt� �
case �e� �� �stmt� �
���
case �en�� �� �stmtn�� �
default� �stmtn �

g

The semantics of this statement are that the �expression� is evaluated to an integer type value and
the case labels are searched for the �rst label that matches this value� If no match is found� the
optional default label is considered to match any value� Control �ow transfers to the statement
associated with this label and proceeds to successive statements in the switch body� We can
control which statements are executed further by using return or break statements with the
switch body�

��� CHAPTER �� PROCESSING CHARACTER DATA

The syntax of the break statement is simply	

break�

and it may be used only within switch or loop bodies with the semantics of immediately termi�
nating the execution of the body� In loops� the break statement is best used to terminate a loop
under unusual or error conditions� A similar control construct available for loops is the continue
statement	

continue�

which immediately terminates the current iteration of the loop but returns to the loop condition
test to determine if the loop body is to be executed again�

We have also discussed some of the di�culties that can be encountered when mixing numeric
and character data on input� These di�culties are due to the fact that numeric conversion speci�ers
��d or �f� are �tolerant� of white space� i�e� will skip leading white space in the input bu�er to
�nd numeric characters to be read and converted� while character input �using �c or getchar���
is not� For character input� the next character� whatever it is� is read� In addition� numeric
conversions will stop at the �rst non�numeric character detected in the input� leaving it in the
bu�er� We have shown several ways of handling this behavior to make the input tolerant of user
errors in Section ����

Finally� we used the features of the language discussed in this chapter to implement a common
style of user interface	 menu driven programs� Such a style of program also facilitates good top
down� modular design in the coding and testing of our programs�

���� EXERCISES ��

��
 Exercises

� What is the value of each of the following expressions	

ch � �d�

�a� ��ch �� �a�� �� �ch �� �z���

�b� ��ch � �A�� �� �ch � �Z���

�c� ��ch �� �A�� �� �ch �� �Z���

�d� ch � ch %�a� � �A�

�e� ch � ch % �A� � �a�

�� What will be the output of the following	

char ch

int d

ch � �d�

d � !$

printf��ch � �c� value � �d�n�� ch� ch�

printf��d � �d� d � �c�n�� d� d�

�� Write the header �le category�h discussed in section ��
��� Write the macros IS UPPER���
IS DIGIT��� IS PUNCT��� IS SPACE��� IS CONTROL���

�� Write a code fragment to test	

� if a character is printable but not alphabetic

� if a character is alphabetic but not above �M� or �m�

� if a character is printable but not a digit

�� Write separate loops to print out the ASCII characters and their values in the ranges	

�a� to �z��

�A� to �Z��

��� to �	��

� Are these the same	 �a� and �a�� What is the di�erence between them�

�� What will be the output of the source code	

�define SQ�x� ��x� � �x��

�define CUBE�x� ��x� � �x� � �x��

�define DIGITP�c� ��c� �� ��� �� �c� �� �	��

char c � ���

��� CHAPTER �� PROCESSING CHARACTER DATA

if �DIGITP�c��

printf���d�n�� CUBE�c % �����

else

printf���d�n�� SQ�c % �����

�� Find the errors in the following code that was written to read characters until end of �le�

char c

while �c � getchar���

putchar�c�

�� What will be the output of the following program�

�include �stdio�h�

main��

� int n� sum

char ch

ch � �Y�

sum � �

scanf���d�� �n�

while �ch �� �N�� �

sum � sum � n

printf��More numbers
 �Y�N� ��

scanf���c�� �ch�

scanf���d�� �n�

�

�

�� What happens if scanf�� is in a loop to read integers and a letter is typed�

� What happens if scanf�� reads an integer and then attempts to read a character�

�� Use a switch statement to test if a digit symbol is an even digit symbol�

�� Write a single loop that reads and prints all integers as long as they are between
 and
��
with the following restrictions	 If an input integer is divisible by � terminate the loop with
a break statement� if an input integer is divisible by
� do not print it but continue the loop
with a continue statement�

���� PROBLEMS ���

��� Problems

� First use graph paper to plan out and then write a program that prints the following message
centered within a box whose borders are made up of the character !�

Happy New Year

�� Write a program to print a character corresponding to an ASCII value or vice versa� as
speci�ed by the user� until the user quits� If the character is not printable� print a message�

�� Write a function that takes one character argument and returns the following	 if the argument
is a letter� it returns the position of the letter in the alphabet� otherwise� it returns FAIL�
whose value is �
� For example� if the argument is �A�� it returns �� if the argument is �d��
it returns �� and so forth� De�ne and use macros to test if a character is a lower case letter
or an upper case letter�

�� Use a switch statement to write a function that returns TRUE if a character is a consonant
and returns FALSE otherwise�

�� Use a switch statement to write a function that returns TRUE if a digit character represents
an odd digit value� If the character is not an odd digit� the function returns FALSE�

� Write a program to count the occurrence of a speci�ed character in the input stream�

�� Write a program that reads in characters until end of �le� The program should count and
print the number of characters� printable characters� vowels� digits� and consonants in the
input� Use functions to check whether a character is a vowel� a consonant� or a printable
character� De�ne and use macros to test if a character is a digit or a letter�

�� Modify the program in Chapter � to �nd prime numbers so that the inner loop is terminated
by a break statement when a number is found not to be prime�

�� Write a function that takes two arguments� replicate�int n� char c�
� and prints the
character� c� a number� n� times�

�� Use replicate�� to write a function� drawrect��� that draws a rectangle of length� g� and
width� w� The dimensions are in terms of character spaces� The rectangle top left corner is
at top� t� and left� l� The arguments� g� w� t� and l are integers� where t and l determine
the top left corner of the rectangle� and the length of the rectangle should be along the
horizontal� Use ��� to draw your lines� Write a program that repeatedly draws rectangles
until length and width speci�ed by the user are both zero�

� Repeat
�� but modify drawrect�� to fillrect�� that draws a rectangle �lled in with a
speci�ed �ll character�

�� Write a function that draws a horizontal line proportional to a speci�ed integer between the
values of � and ��� Use the function in a program to draw a bar chart� where the bars are
horizontal and in proportion to a sequence of numbers read�

��� CHAPTER �� PROCESSING CHARACTER DATA

�� Write a function to encode text as follows	

a� If the �rst character of a line is an upper case letter� then encode the �rst character to
one that is
 position higher in a circular alphabet� Move the rest of the characters in
the line up by
 position in a circular printable part of the ASCII character set�

b� If the �rst character of a line is a lower case letter� then move the �rst character down
by � positions in a circular alphabet� Move the rest of the characters in the line down
by � positions in a circular printable part of the ASCII character set�

c� If the �rst character of a line is white space� then terminate the input�

d� Otherwise� if the �rst character of a line is not a letter� then move all characters in the
line down by
 position in a circular printable part of the ASCII character set�

�� Write a function to decode text that was encoded as per Problem
��

�� Write a menu�driven program that combines Problems
� and
� to encode or decode text
as required by the user� The input for encoding or decoding is terminated when the �rst
character of a line is a space� The commands are	 encode� decode� help� and quit�

� Write a function that takes three arguments� two �oat numbers and one arithmetic operator
character� It returns the result of applying the operator to the two numbers� Using the
function� write a program that repeatedly reads a �oat number� followed by an arithmetic
operator� followed by a �oat number� each time it prints out the result of applying the
operator to the numbers�

�� Modify the program in Problem

 to allow further inputs of a sequence of an operator
followed by a number� Each new operator is to be applied to the result from the previous
operation and the new number entered� The input is terminated by a newline� Print only
the �nal result�

�� Read and convert a sequence of digits to its equivalent integer� Any leading white space
should be skipped� The conversion should include digit characters until a non�digit character
is encountered� Modify the program so it can read and convert a sequence of digit characters
preceded by a sign� � or %�

�� Write a program that converts the input sequence of digit characters� possibly followed by a
decimal point� followed by a sequence of digits� to a �oat number� The leading white space
is skipped and the input is terminated when a character not admissible in a �oat number is
encountered�

��� Modify the above program to include a possible leading sign character�

�
� Write a function that takes a possibly signed integer as an argument� and converts it to a
sequence of characters�

��� Write a program that takes a possibly signed �oating point number and converts it to a
sequence of characters with � digits after the decimal point�

���� PROBLEMS ���

��� Modify the word extraction program� wds�c� in Figure ��

� It should count words with
exactly four characters and words with �ve characters� Assume the input consists of only
valid characters and white space�

��� Write a program that reads in characters until end of �le� The program should identify each
token� i�e� a word after skipping white space� The only valid token types are	 integer and
invalid� White space delimits words but is otherwise ignored� An integer token is a word
that starts with a digit and is followed by digits and terminates when a non�digit character
is encountered� An invalid token is made up of any other single character that does not
belong to an integer� Print each token as it is encountered as well as its type� Here is a
sample session	

Type text� EOF to quit� ���� a��b
��$! integer

a invalid

�� integer

b invalid

Type text� EOF to quit� �D

��� Modify the program in Problem �� so it also allows an identi�er as a valid token� An
identi�er starts with a letter and may be followed by a sequence of letters and�or digits�

�
� Modify the program in Problem �� so that tokens representing �oat numbers are also allowed�
A �oat token must start with a digit� may be followed by a sequence of digits� followed by
a decimal point� followed by zero or more digits� Here is a sample session	

Type text� EOF to quit� The ID Number is ���	 not ����

The Identifier

ID Identifier

Number Identifier

is Identifier

"�� Integer

� Invalid

not Identifier

"��� Float

Type text� EOF to quit� pay � ��� � hours � rate�

pay Identifier

� Invalid

"�$ Float

� Invalid

hours Identifier

� Invalid

rate Identifier

 Invalid

Type text� EOF to quit� �D

��
 CHAPTER �� PROCESSING CHARACTER DATA

Hint	 Skip leading delimiters� test the �rst non�delimiter� and build a word of the appropriate
type� An integer and a �oat are distinguished by the presence of a decimal point�

