
Chapter �

Numeric Data Types and Expression

Evaluation

In the preceding chapters we have introduced all the basic tools needed to write programs in C�
the control constructs and operators of the language� as well as the basic data types for integer�
�oating point� and character data� Using these basic tools� we have been able to write programs
for both numeric processing and non�numeric� character� processing�

In this chapter we will introduce several useful features of C that allow greater �exibility in
program writing and allow a greater range of values and precision� We will �rst take a closer look
at integer and �oating point data types� their size� and limitations� and will introduce sub�types
of integers� and double precision �oating point numbers� We will formalize the order of evaluation
of operators in expressions as well as the type of the expression value when several data types are
are present as operands� We will also introduce several C statements that are possible alternatives
for statements already discussed and describe some new operators�

��� Representing Numbers

As we saw in Chapter 	� the range of possible values of objects depends on the sizes used to
represent them� The �nite size of an object puts a limit on the range of values that can be stored
in it� Integer objects have a limit on the range of positive and negative integers� Floating point
numbers have limits on the number of signi�cant digits 
known as the precision� as well as on
the range of the exponents 
limiting the range of numbers�� We will illustrate the reasons for these
limits by analogy with decimal representation�

Let us represent integers using a �nite number of decimal digits� say only �ve digits are allowed�
We can use these digits to represent unsigned positive integers in the range � to 




� If we wish
to represent both positive and negative numbers� we need one digit to encode the sign� � or �� and
can then use only the remaining four digits to represent the absolute value of an integer� So� with
�ve digits� we can represent positive and negative integers in the range �



 to �



� If we had

���



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

more digits to represent integers� the range of values will be appropriately greater�

Now let us use the same �ve digits to represent �oating point numbers in scienti�c notation�
i�e� a fractional part multiplied by a power of ten� For our discussion� we will assume that the
fractional part is less than 	 and that the exponent of ten can be positive or negative� For example�

����E�

���	E��

����
E�

The numbers are shown as a fraction times some power of ten where the exponent is shown after
the E� The �rst number is ������ the second is ���
��� the third is ������

When we represent numbers using this system� we do not need to store the decimal point 
it
is always in the same place� or the base 
it is always E� standing for 	��� So� of our � digits� let
us say that we use three digits for the fractional part and two digits for the exponent� One digit
of the fractional part and one digit of the exponent is reserved for the sign� This leaves only two
digits for the absolute value of the fractional part� and it leaves one digit for the absolute value of
the exponent� Thus� the range of values for the fractional part is ��

 to ��

 and the range for
exponents is �
 to �
�

Even though the range of actual values is quite large 
we can represent numbers from almost
negative one billion to positive one billion�� there are only two signi�cant digits of precision� all
other digits will be zeros contributed by the power of ten� So� the range of numbers is from
�

�� ���� ��� to �

�� ���� ��� 
����E�� to ����E���� With this scheme� it would be impossible
to represent a number such as 	������� exactly� The best we can do is represent it as ����E���
which is the number 	�� � not nearly as accurate as 	�������� We have a loss of precision 
or
accuracy� because of the limited number of digits we have for representing �oating point numbers�
There is a slight distinction between precisions and accuracy� In the above representation scheme�
we can always say there are � digits of precision� however� the accuracy depends on the value of
the exponent� The smallest number we can represent is ����������

 
����E���� which is pretty
darn accurate� However� if the exponent is �
� our accuracy is only � � million� If more digits are
used to represent �oating point numbers� the precision and the range can be greater� For example�
if � digits were allowed� with four digits for a signed fractional part� we could represent 	�������
as �����E�� which is 	����� If � digits were allowed� with � digits for a signed fractional part� we
could represent the same number as ������E�� which is 	����� and so forth�

Conceptually� binary representation of numbers is no di�erent from decimal representation�
The �nite size imposes a limit on the range of integers and on the precision and range of �oating
point numbers� Binary representation is also tailored to facilitate the basic operations in hardware�
such as addition and subtraction� For example� as we saw in Chapter 	� integers are typically
represented in what is called the two�s complement number system� However� one does not need
to know the number system to realize that the limits on the range of values will be similar in
nature and will depend on the sizes used to represent the numbers�

Recall that� in a computer� memory is organized as a sequence of bytes� each byte with an
address� and storage is allocated in units of bytes� For example� if 	 byte is used for signed integers�



���� REPRESENTING NUMBERS ��


the range of values 
in decimal� is �	�� to 	��� and unsigned integers have the range � to ���� If
� bytes are used to represent signed integers� the range is ������ to ������� and � to ����� for
unsigned integers� If � bytes are used to represent integers� the range will be appropriately greater�
Similarly for �oating point numbers� with � bytes to represent �oating point numbers� the precision
is equivalent to about � signi�cant decimal digits and a magnitude between approximately 	�E��
and 	�E���� If more bytes are used for �oating point numbers� the precision and the range are
both appropriately greater�

So far we have used char� int� and float data types in our programs� Character data type is
usually encoded as an ASCII integer value 
signed or unsigned� in one byte of memory� Integers
are at least two bytes in size� and �oating point numbers are at least four bytes in size� C provides
additional integer sizes and �oating point data types that provide greater range and�or precision�

����� Signed and Unsigned Integer Types

For integer data types� there are three sizes� int� and two additional sizes called long and short�
which are declared as long int and short int� The keywords long and short are called sub�

type quali�ers� The long is intended to provide a larger size of integer� and short is intended
to provide a smaller size of integer� However� not all implementations provide distinct sizes for
them� The requirement is that short and int must be at least 	� bits� long must be at least ��
bits� and that short is no longer than int� which is no longer than long� Typically� short is 	�
bits� long is �� bits� and int is either 	� or �� bits�

Unless otherwise speci�ed� all integer data types are signed data types� i�e� they have values
which can be positive or negative� Recall� char types� without quali�ers� may be signed or unsigned
depending on the implementation� However� all sizes of integers and char type may be explicitly
quali�ed as signed or unsigned� 
Unsigned numbers are always non�negative numbers��

For integers� long� short� and unsignedmay be declared with the keyword int or without it�
In C� whenever a data type is left out in a declaration� int is assumed by default� Here are some
example declarations�

long int light�year


short int n


signed char ch


unsigned char letter


unsigned int age


long distance


short m� n


unsigned memory�address


unsigned long zip�code


The data type of a constant� written directly into a program� is ascertained from the way it is
written� Integer constants are written as a string of digits� optionally preceded by a unary positive



�	� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

or a negative operator� Commas are not allowed� Decimal integer constants should be written
without leading zeros� for example�

��

��	�

�

�

�
�


�	���

Alternate number systems may also be used to express integer constants in C programs� Octal
numbers are written with a leading zero� and hexadecimal numbers are written with a preceding
zero followed by the letter x or X�

Constants Octal�Hexadecimal Integers

���� octal number ���

���� octal number ���

�x�� hexadecimal number ��

�X�F hexadecimal number �F

A constant to be represented as a long int may be explicitly written using the su�x l or L� as
in�

���L

�
�	�l

Any integer constant that is too big to �t into the integer size is interpreted by the compiler as
long�

Unsigned integers can be of all sizes� int� long� and short� The range of unsigned integers
is � through �k��� where k is the number of bits� so for 	� bits the maximum unsigned integer is
������ Unsigned integer constants are written using the su�x� u or U�

�xFFFFU

���U

�			u

The two su�xes can be combined to write an unsigned long�

����
�	�UL

�X�FFF FFFFLU



���� REPRESENTING NUMBERS �		

����� Single and Double Precision Floating Point Numbers

Di�erent sizes of �oating point data can also be declared with the keywords float and double�
The type speci�er double is used to declare double precision �oating point numbers� The size of
float is typically �� bits� and that of double is �� bits� For greater precision� most scienti�c and
engineering computation should be performed using the double data type� Furthermore� extra
precision may be provided for �oating point numbers by declaring them long double� 
This may
be the same as or more bits of precision as double� depending on implementation�� Here are
example declarations for �oating point numbers�

float x


double GPR


long double y


Decimal float constants in programs have an integer part and a fractional part with a decimal
point between them� They may also be written in scienti�c 
or exponential� notation� i�e� a decimal
number multiplied by a power of ten to indicate the actual position of the decimal point� Positive
and negative numbers may be written with an explicit positive or negative unary operator�

����	��

��

��

����
�����

����������

���	�
E


���
��e��

��	����
e���

The last three numbers are written in exponential notation with the exponent of ten shown after
the letter e or E� The exponent may be a positive or a negative integer� For clarity� always write
float numbers with at least one digit before and one after the decimal point� for example� zero
is ��� in float representation�

Floating point constants are taken to be of double precision type by default� Single precision
�oating point constants may be speci�ed with a su�x f or F�

���
�	f

�����
��F

Extra precision for constants may be written with the su�x l or L�

���
�	����	����L



�	� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

��� New Control Constructs

So far� we have seen all of the basic control constructs of the C language for calling functions�
branching� and looping� In this section we introduce two new looping constructs that can be used
in place of while� namely for loops and do���while loops�

����� The for Statement

The logic of the loops we have constructed so far has included three components� some form of
initialization before the loop� a test for loop termination� and some form of data update within the
body of the loop� We implemented these loops using three separate statements in the program�
with a while statment forming the condition test and loop body� Another looping construct
combines all three components of a loop in a single statement� the for statement�

The syntax for the for statement is�

for ��expr��� �expr��� �expr��� �statement�

The keyword� for� and the parentheses are required as shown� Notice the three expressions are
separated by semi�colons 

�� The semantics of the for statement is as follows� The expression�
�expr��� is evaluated once before the loop condition is tested for the �rst time��expr�� is the loop
condition which is evaluated prior to each execution of the loop body� and �expr�� is evaluated
at the end of the loop body� just prior to testing the condition� The process repeats until the loop
condition becomes False� The body of the loop is �statement�� which� as usual� may be any valid
type of C statement� empty� simple� or compound� As with the while loop� if the loop condition
evaluates to True� the loop body is executed� otherwise� if the loop condition evaluates to False�
the loop is terminated� and control passes to the next statement following the for statement� In
typical use� the expressions� �expr�� and �expr�� initialize and update a variable� respectively�
Figure ��	 shows the control �ow for a for statement�

A for statement includes all the necessary features of a loop� an initialization expression� a
loop condition� and an update expression� Thus� the following two forms of implementing a loop
are equivalent�

�expr���
while ��expr��� f

�statement�
�expr���

g

and for ��expr��� �expr��� �expr��� �statement�

The break and continue statements can also be used in the body of a for statement� just as
in a while statement� The use of a for statement or a while statement to implement a loop is a
matter of choice� based on the logic of the algorithm� One advantage might be that writing a for

statement reminds one that initialization and update expressions are usually necessary for a loop�



���� NEW CONTROL CONSTRUCTS �	�

statement

expr�

expr�

PPPPPP������PP
PP

PP�
��
���

expr�

�

�

�

�

�

�
False

True

Figure ��	� Control Flow of for Loop

An Example� Factorial

Let us consider an example task which may require a bigger range of integers than the one provided
by int on many machines� The task is to determine a cumulative product from 	 to a positive
integer� n� The product from 	 to n is called the factorial of n� written n�� The algorithm is very
simple� read an integer n� call a function fact�n� which returns the factorial of n� print the result�

The function fact�� merely needs to multiply a cumulative product variable� initialized to 	�
by all integers from 	 through n�

initialize product to �

repeat for values of i � �� �� ������ n

product � product � i

return product

The variable� product� must be initialized to 	 before the loop� otherwise the cumulative product
will be garbage� Each iteration brings us closer to the result� We will use a for statement to
implement the iterative algorithm for a factorial function as shown in Figure ���� The for loop
executes as follows� The �rst expression in parentheses is an initialization expression� i�e� i is
initialized to 	� The second expression is the loop condition� If the second expression� i �� n�
evaluates to True� then the loop body is executed� The third expression is the update expression�
it is evaluated after the loop body is executed� and control then passes to the loop condition� In
our example� the expression� i � i � �� is evaluated to update the variable� i� after the loop body



�	� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� File� fact�c

Program computes the factorial of integers using function

fact���

��

�include �stdio�h�

int fact�int n�


main��

� int n


printf�����Factorial Program����n��


printf��Type positive integers� EOF to terminate�n��


while �scanf���d�� �n� �� EOF�

if �n �� ��

printf���d typed� type a positive integer�n�� n�


else

printf��Factorial of �d is �d�n�� n� fact�n��


 

�� Function computes factorial of n using a for loop� ��

int fact�int n�

� int i� product


product � �


for �i � �
 i �� n
 i � i � ��

product � product � i


return product


 

Figure ���� Code for factorial

is executed� The loop condition is then tested� and the process repeats until the loop condition
becomes False� The above loop executes for i � �� �� �� ���� and n and the variable product
accumulates the factorial value of 	 � � � � � ��� � n�

The driver uses a while condition�

�scanf���d�� �n� �� EOF�

where scanf�� reads an integer item if possible and stores it in n� The value returned by scanf��

is then compared with EOF and if the value returned is NOT EOF� the loop executes� As soon as
scanf�� returns EOF� the loop is terminated� The while expression serves both to read an item
and to check if the returned value is EOF� The loop body tests the value of n� if it not a positive
integer� the user is asked to retype a positive number� otherwise� the value of fact�n� is printed�

Here is a sample session run on an IBM PC�



���� NEW CONTROL CONSTRUCTS �	�

���Factorial Program���

Type positive integers� EOF to terminate

�
Factorial of � is ��

�
Factorial of 
 is ���

��
Negative number �� typed� type positive integers

	
Factorial of � is 	��



Factorial of 	 is 
���

�
Factorial of � is ��
���

!Z

The cumulative product in the factorial function grows very fast with n� For moderately large
values of n� the cumulative product over�ows the int type object� the number is too large for the
size of the object� When this occurs� the results are meaningless� Usually� an over�ow is indicated
when a program� working correctly for smaller numbers� gives ridiculous results for larger numbers�
In the case of the factorial function� the �rst sign of trouble is a negative result for the factorial of
�� We know the result must be positive since we are multiplying only positive numbers� What has
happened is the result has over�owed into the sign bit resulting in a negative integer� If factorial
of larger numbers is desired� a long int variable should be used for the variable product as well
as for the function fact� Here is a revised version of the factorial function�

�� Function computes a long factorial of n using a for loop� ��

long longfact�int n�

� long int product


int i


product � �


for �i � �
 i �� n
 i � i � ��

product � product � i


return product


 

We must keep several things in mind when using the function� longfact��� in the driver program�
In the calling function� if the value returned by longfact�� is saved� it must be assigned to a long
integer� otherwise� a long result would be converted to int by dropping higher order bits and the
result would be meaningless� In addition� to print the long value of longfact��� the conversion
speci�er must be quali�ed by the pre�x l�

printf��Factorial of �d is �ld�n�� n� longfact�n��




�	� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

statement

�

�

�

PPPPPP������PP
PP

PP�
��
���

�

expression
True

False

Figure ���� Control Flow of do���while Loop

The conversion speci�er� �ld� prints a long decimal integer�

This example has shown a case where the size of the type int is smaller than the type long�
as it is in some implementations� The situation could be corrected by using a larger size data
type to accumulate the factorial� However� even this type has limitations� the factorial of 	� will
over�ow the size of a long integer� The only possibility provided for even larger numbers is to use
a �oating point representation� which has a larger range� at the expense of loss of precision�

����� The do���while Statement

In while statements and for statements� the condition is tested for each iteration before the loop
body is executed� Thus� it is possible that the loop may not be executed even once if the loop
condition evaluates to False the �rst time� The C language provides another looping construct
which guarantees that the body will be executed at least once� the do���while statement� The
loop condition is tested after the body is executed� and the loop continues or terminates depending
on the condition value� The syntax for the do���while statement is�

do
�statement�

while ��expression���

Figure ��� shows the control �ow for this construct� As with the other loop constructs� the
break and continue statements can also be used with the do���while statement� The choice of
a loop construct depends on the program logic� There are situations when one construct may be
preferable to another�



���� NEW CONTROL CONSTRUCTS �	�

An Example� Square Root

Programs are often written to �nd a solution 
or solutions� to an algebraic equation� for example�

y� � x � �

Here� the solution for the variable� y� is the square root of x� In general� such solutions are real
numbers� and as we have seen� �oating point representations of real numbers use a �nite number
of bits� and are therefore limited in the precision of the result� Solutions to most numeric problems
can never be exact 
all solutions are precise only up to a certain number of decimal digits� but
the result may be su�ciently close to the real solution to be acceptable�

One important numeric computation method to �nd solutions to equations involves successive
approximations� This method starts with a guess for the solution to the problem� and tests if
the guess satis�es the equation� If the guess is close enough for a solution� it is accepted and
computation terminates� otherwise� the guess is improved� i�e� brought closer to the solution and
the process is repeated� After each iteration� the guess is closer and closer to the solution� until it
is acceptably close enough�

One successive approximation algorithm we will use is Newton�s method to compute the square
root of a number� x� Newton�s method starts with an arbitrary guess� and if it is not good enough�
it is improved by averaging the guess with x�guess� The process continues until the guess is close
enough� Here is an example of the process for square root of 
���

guess x�guess Average
	�� 
�� 
	�� � 
�������
��� 	�� ���
��� ����� �����

����� � � �

In just three iterations� we have arrived close to the square root of 
�� 
which is ����� We will say
a guess is close enough to the solution� if x and the square of guess di�er by a small value� say
����	� or less� The algorithm is simple�

begin with an initial guess

repeatedly do the following

improve the guess

while it is not close enough

We will start with an arbitrary guess� say 	��� for the square root of the number� x� In a loop�
each iteration improves the guess of the square root of x until the guess is close enough� In our
implementation� we assume two functions� one to test if a guess is close enough� and the second
to improve the guess� This algorithm works for any successive approximation method� the only
di�erence would be how to improve the guess� and how to check the guess for closeness to the
solution� Here is the code fragment for square root using a do���while statement�



�	� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

guess � ���


do

guess � improve�guess� x�


while ��close�guess� x��

The body of the loop follows the keyword do� The loop body is executed and then the while

expression is tested for True or False� If it is True� the loop is repeated� otherwise� the loop is
terminated� The above loop body calls on a function improve�� to improve the guess and the
condition is then tested to see if the improved guess is close enough by the function close���

As we said� the di�erence between do���while and the other loop constructs is that in this
case the loop is executed at least once� while loops and for loops may be executed zero times if
the loop condition is initially False� In the case of successive approximations� we always expect
the initial guess to need improvement� so� the loop must be executed at least once�

Figure ��� shows the implementation of the driver� The source �le includes a header �le
mathutil�h that declares the function prototypes for close��� improve��� and other functions
de�ned in a source �le� mathutil�c� shown in Figure ���� The two source �les sqroot�c and
mathutil�c must be compiled and linked to create an executable �le� Here is mathutil�h�

�� File� mathutil�h ��

�� File contains prototypes for functions defined in mathutil�c ��

double improve�double guess� double x�


int close�double guess� double x�


double absolute�double x�


Notice we have used the type� double for the parameters and return values of the functions because
precision is important in successive approximation algorithms� It is best to use double precision in
all such computations� We have also included the header �le� tfdef�h� which de�nes the symbolic
constants TRUE and FALSE�

The program driver uses a loop to read a positive� double precision number into x using the
conversion speci�cation �lf� 
When a double precision number is printed� conversion speci�cation
is still �f since a printed double precision �oating point number looks the same as a single precision
number�� If the number read into x is negative or zero� a message is printed and the loop is repeated
until a positive number is read� We have used the do���while construct here� since we know that
the loop must be executed at least once to get the desired data�

Next� guess is initialized to 	�� and the loop body improves guess We have included a debug
statement to print the value of the improved guess during program testing� The loop repeats until
guess is close enough to be an acceptable solution�

We still need to write the functions improve�� and close��� The function close�� tests if the
absolute value of the di�erence between the square of guess and x is small enough� We will use a
function� absolute��� that returns the absolute value of its argument� Figure ��� shows close��
and absolute�� in the source �le� mathutil�c� Some of the functions de�ned in this source �le



���� NEW CONTROL CONSTRUCTS �	


�� File� sqroot�c

Other Files� mathutil�c

Header Files� tfdef�h� mathutil�h

Program computes and prints square roots of numbers� Uses Newton"s

method to compute square root of x� Start with any guess� Test if

it is acceptable� If not� improve guess by averaging it with x�guess�

��

�include �stdio�h�

�include �tfdef�h�

�include �mathutil�h�

�define DEBUG

main��

� int i


double x� guess


printf�����Square Root Program� Newton"s Method����n�n��


printf��Type a positive number� ��


do �

scanf���lf�� �x�


if �x �� ��

printf���f typed� type a positive number�n�� x�


 while �x �� ��


guess � ���


do �

guess � improve�guess� x�
 �� improve guess� ��

�ifdef DEBUG �� debug stmt ��

printf��guess � �f�n�� guess�
 �� Print guess� ��

�endif �� end of debug ��

 while ��close�guess� x��
 �� terminate if guess is close ��

�� exit loop if guess is close enough ��

printf��Sq�Rt� of �f is �f�n�� x� guess�
 �� Print sq� rt� ��

 

Figure ���� Code for Square Root



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� File� mathutil�c ��

�include �stdio�h�

�include �tfdef�h�

�include �mathutil�h�

�� Tests if square of guess approximately equals x� ��

int close�double guess� double x�

�

if �absolute�guess � guess � x� � ������

return TRUE


else

return FALSE


 

�� Returns absolute value of x� ��

double absolute�double x�

�

if �x � ��

return �x


else

return x


 

�� Returns average of guess and x � guess� ��

double improve�double guess� double x�

�

return �guess � x � guess� � �


 

Figure ���� Code for Math Utilities



���� NEW CONTROL CONSTRUCTS ��	

are also called within it� e�g� absolute��� so we have included mathutil�h in this source �le� as
well as tfdef�h� which de�nes TRUE and FALSE� Finally� we write the function improve�� which
merely returns the average of guess and x � guess�

Sample Session�

���Square Root Program���

Type a number� �	
guess � ��
�����

guess � 
�����	�

guess � �������


guess � ������
	

guess � ��������

Sq�Rt� of ��������� is ��������

The debug statement shows how guess is changed at each step� Once we are satis�ed with the
program� we can remove the de�nition of DEBUG�

Next� we modify our program to encapsulate it into a function� sqroot��� and to provide user
control over the precision desired for the solution instead of building it into the function� close���
The sqroot�� function requires two arguments� a number and an acceptable error in the solution�
We also require a new function close��� that checks if a given guess is close enough to a solution
with a speci�ed margin of error� With this modi�cation� it is not necessary to use double for
numbers in main��� Only the actual computations need to be double type for greater precision�
Figure ��� shows the revised driver in which float numbers are used in main�� and the function
sqroot�� is called to �nd the square root� Figure ��� shows the prototypes added to mathutil�h

and the new functions in mathutil�c� The driver simply repeats the following loop� read a
number� if the number is negative� continue the loop� otherwise� call sqroot�� to �nd the square
root of the number within speci�ed margin� print the value� The function sqroot��merely starts
with a guess and improves it in a loop until it is within an allowable margin of error� The �nal
acceptable guess is returned� The function close��� tests if a guess is close to the solution within
a speci�ed error�

In main��� numbers are read into float variables� so when arguments are passed to sqroot���
they are cast to double� Likewise� the returned double value is cast to float before assigning it
to the variable root� Here is the statement that uses cast operators to convert types�

root � �float� sqroot��double� x� ������


Recall that a �oating point constant is always assumed to be of type double� If function prototypes
are declared� we don�t have to convert the types explicitly by cast operators� the compiler will take
care of that for both the arguments and the returned value� However� the explicit cast operators
improve readability by showing that conversions are taking place�

Sample Session�



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� File� sqrt��c

Other Files� mathutil�c

Header Files� tfdef�h� mathutil�h

Program computes and prints square roots of numbers until the end of

file� Uses Newton"s method to compute the square root of x to within a

specified error margin�

��

�include �stdio�h�

�include �tfdef�h�

�include �mathutil�h�

main��

� int i


float x� root


printf�����Square Root Program����n�n��


printf��Type positive numbers� EOF to quit� ��


while �scanf���f�� �x� �� EOF� �

if �x �� �� �

printf���f typed� type positive numbers �n��


continue


 

root � �float� sqroot��double� x� ������


printf��Sq�Rt� of �f is �f�n�� x� root�


 

 

Figure ���� Modi�ed Square Root Driver



���� NEW CONTROL CONSTRUCTS ���

�� File� mathutil�h � continued ��

double sqroot�double y� double error�


int close��double g� double y� double error�


�� File� mathutil�c � continued ��

�� Uses Newton"s method to compute square root within the margin

allowed by error�

��

double sqroot�double y� double error�

� double guess � ���


do

guess � improve�guess� y�
 �� improve guess� ��

while ��close��guess� y� error��
 �� while guess not close ��

return guess
 �� when close enough� return guess���

 

�� Tests if square of g equals y within the error limits specified� ��

int close��double g� double y� double error�

�

if �absolute�g � g � y� � error�

return TRUE


else

return FALSE


 

Figure ���� Modi�ed Square Root Utilities



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

���Square Root Program���

Type positive numbers� EOF to quit� �	
Sq�Rt� of ��������� is ��������

��
Sq�Rt� of ��������� is ����


�

��
Sq�Rt� of ��������� is ���
����

��
Sq�Rt� of �
������� is 
�������


D

The last example shows the square root of ���� to be slightly di�erent from the correct value of ����
but within our allowed error of ����	� It must be remembered that �oating point representation
cannot be exact due to the �nite number of bits used� Therefore� if the error speci�ed were very
small� it may not be possible to arrive at an answer with the desired accuracy� That is� the guess
may never converge to a value such that close��� returns True and the loop in sqroot�� would
never terminate� In successive approximations algorithms� one must guard against possible lack
of convergence such as by putting a limit on the number of loop iterations allowed�

In Chapter � we will see that standard library functions are available to compute the square
root and the absolute value of a number� Our emphasis here has been to illustrate program devel�
opment using just the basics of a programming language� viz� expressions including assignments�
branching� and looping�

��� Scalar Data Types

All of the data types we have seen so far� char� int� short long� float� and double are called
scalar 
or base� data types because they hold a single data item� 
Chapters � and 	� describe
compound data types provided in C�� There are two other scalar types in the language� enum and
void which are described in this section� We will refer to float and double types as �oating
point types and to all sizes of integers� char and enum types as integral types� In addition� we
describe how a user de�ned type may be declared�

����� Data Type void

The data type void actually refers to an object that does not have a value of any type� The most
common example of its use is when we de�ne a function that returns no value� For example� a
function may only print a message and no return value is needed� Such a function is used for
its side e�ect and not for its value� In the function declaration and de�nition� it is necessary to
indicate that the function does not return a value by using the data type void to indicate an
empty type� i�e� no value� Similarly� when a function has no formal parameters� the keyword void



���� SCALAR DATA TYPES ���

is used in the function prototype and header to signify that there is no information passed to the
function�

Here is a simple program using a message printing function which takes a void parameter and
returns type void�

�� File� msg�c

This program introduces data type void�

��

void printmsg�void�


main��

�

�� print a message ��

printmsg��


 

�� Function prints a message� ��

void printmsg�void�

�

printf������HOME IS WHERE THE HEART IS�����n��


 

No parameters are required for the function� printmsg��� and it returns no value� it merely prints
its message� In the function call in main��� parentheses must be used without any arguments�
Observe that no return statement is present in printmsg��� When a function is called� the body is
executed and� when the end of the body is reached� program control returns to the calling function�
Such a return from a called function without a return statement is often called returning by falling

o� the end� There are times when it is necessary to return from a void function before the end
of the body� In such case� a return statement� with an empty expression may be used to return
nothing�

void printmsg�void�

�

printf������HOME IS WHERE THE HEART IS�����n��


return


 

A return statement can also be used elsewhere in the body to return control immediately to
the calling function� Consider a function which prints the values of its arguments if they are all
positive� otherwise it does nothing�

void func�int x� in y�



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�

if �x �� � ## y �� ��

return


printf��x � �d� y � �d�n�� x� y�


 

If either of the arguments is not positive� the function returns to the calling function� If it does
not return� then it prints the values of the arguments�

The use of void for a function returning no value is not strictly necessary� We could declare
the function as being type int 
or any other type� and simply not return any value and never use
the value of the function in an expression� However� the void declaration makes the nature of
the function explicit to someone reading the code and may allow the compiler to generate more
e�cient object code�

����� Enumeration

The data type� enum 
for enumeration� also allows improvement in program clarity by specifying
a list of names� the enumeration constants� which are associated with constant integer values� It
is similar to using �define directives to de�ne constant integer values for a set of symbolic names�
however� with enum the compiler can generate the values for you� and may check for proper use of
enum type variables� A variable of enum type is declared as follows�

enum � FALSE� TRUE  flag


The variable� flag� is de�ned here to be of a type which can take on the two enumerated constant
values� FALSE and TRUE� Normally� enumeration constants are identi�ers whose values start at zero
and increase in sequence� here� FALSE is �� and TRUE is 	� However� the enumeration can have
explicit constant values speci�ed in the enumeration�

enum � SUN � �� MON� TUE� WED� THU� FRI� SAT  day


Here� SUN is associated with value 	� and the rest of the names have values in increasing sequence�
MON is �� TUE is �� and so on until SAT which is �� The variable� day can hold any of the enumerated
values�

An enumeration type can be given a tag� i�e a name which can be used later to declare variables
of that tagged enumeration type� For example� we can name an enumeration�

enum boolean � FALSE� TRUE  


where the name boolean can then be used to declare variables of that enumeration type�



���� SCALAR DATA TYPES ���

enum boolean flag�� flag�


This declaration de�nes variables� flag� and flag�� which are of a type speci�ed by the boolean
enumeration� that is� flag� and flag� can have values FALSE or TRUE� It is also possible to specify
a tag and declare variables in the same declaration�

enum boolean �FALSE� TRUE done


enum boolean found


The �rst declaration speci�es a tag� boolean� for the enumeration as well as declaring a variable�
done of this type� The second declaration de�nes a variable� found� of the enumeration boolean

type� Here is a function� digitp��� that returns a boolean value to the calling function� 
The
calling function must also declare the enumeration in order to use the returned value correctly��

enum boolean � FALSE� TRUE  


enum boolean digitp�char c�

�

if �c �� "�" �� c �� "�"�

return TRUE


else

return FALSE


 

Remember� the value of an enum type variable is an integer� An enumerated data type is
primarily a convenience for writing the source code� information about the symbolic names are
not retained at run time� For example� if we were to execute a statement�

printf��digitp returns �d�n��digitp�"�"��


it would print

digitp returns �

NOT

digitp returns TRUE

However� some symbolic debuggers may use the enumerated names for displaying debugging in�
formation�



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

����� De�ning User Types� typedef

The C language provides a facility for de�ning synonyms for data types to make programs more
readable� New data types that are equivalent to existing data types may be created using the
typedef declaration� The syntax is�

typedef �existing�type�speci	er� �new�type�speci	er��

The scope of a type de�nition is from the point of de�nition to the end of the source �le� Variables
can then be de�ned in terms of these new types� For example� variables used to represent values
of age of people or objects can be de�ned to be of a new type� age�

typedef int age


age yrs


The variable yrs can have age type values� In this case� the primary di�erence is that we can
have more meaningful names for data types than the generic name int�

A typedef de�nition is also commonly used to �hide the details� of more complicated decla�
rations�

typedef enum � FALSE� TRUE  boolean


boolean flag


The type de�nition de�nes data type� boolean which is a synonym for an enumerated type con�
sisting of two constant values FALSE and TRUE� Variables of type boolean can now be de�ned� and
they can be assigned one of the enumerated values� In fact� the name� boolean� can be used like
any other data type� Functions can have boolean parameters and can return boolean values� For
example� we could write�

flag � TRUE


if �flag�

printf��Flag is true�n��


Let us consider the task of a simple calculator� It should read two numbers and then read an
operator that is to be applied to the operands� The operator should be applied to the operands
and the result printed� 
When an operator appears after the operands� the expression is said to
be in post�x form�� The algorithm for a post�x calculator is�

repeat until end of file or error in reading numbers

read two numbers and an operator

apply operator to the numbers and get result

print result



���� OPERATORS AND EXPRESSION EVALUATION ��


The program must make sure that two valid numbers and an operator are read correctly� We
will ensure that two numbers are read correctly by examining the value returned by scanf��� The
bu�er will then be scanned and �ushed until a valid operator is found� The program is shown in
Figure ����

The while loop continues until scanf�� is unable to read two numbers� If scanf�� reads two
numbers� it returns a value of �� and the loop is executed� In the loop� we use get operator�� to
get a valid operator� The function� get operator�� will scan each new character in the keyboard
bu�er until an acceptable operator is found� Once an operator is read� an error �ag of type
boolean is initialized to FALSE�

A switch statement is used to determine the result of applying the operator to the operands�
The division operator can lead to trouble if oprnd� is zero� divide by zero is a fatal error and the
program would be aborted� We trap this error by testing for a zero value of oprnd�� in which case
we set error to TRUE� If there is no error� the result is printed � otherwise� an error message is
printed� The loop repeats until scanf�� does not read � floats 
including detecting EOF��

The function get operator�� consists of a loop that continues to read a character until a valid
operator is read� skipping over any white space and any erroneous characters� It uses a boolean

type function� operatorp��� to test if an argument is an acceptable operator� Figure ��
 shows
the required functions�

Sample Session�

���Postfix Calculator���

Type two numbers� followed by an operator� �� �� �� or �

EOF to quit

�� ��
�

��������� � ��������� � ���������

�� �
�
Runtime error� 
� � �


D

We have purposely used a lot of white space to show that the calculator functions correctly�

��� Operators and Expression Evaluation

Once we can declare data to be the type and size with the appropriate precision for our task� we
would like to perform operations with the data� We have already discussed some of the basic C
operators� and in this section we provide the complete precedence table for all C operators� We



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� File� calc�c

This program is a postfix calculator� Two operands followed by an

operator must be entered� The program prints the result� The program

repeats until end of file�

��

�include �stdio�h�

typedef enum � FALSE� TRUE  boolean


char get�operator�void�


boolean operatorp�char c�


main��

� float oprnd�� oprnd�� result


char c


boolean error


printf�����Postfix Calculator����n�n��


printf��Type two numbers� followed by an operator� �� �� �� or ��n��


printf��EOF to quit�n��


while �scanf���f �f�� �oprnd�� �oprnd�� �� �� �

c � get�operator��


error � FALSE


switch�c� �

case "�"� result � oprnd� � oprnd�
 break


case "�"� result � oprnd� � oprnd�
 break


case "�"� result � oprnd� � oprnd�
 break


case "�"� if �oprnd��

result � oprnd� � oprnd�


else

error � TRUE


break


 

if �error �� FALSE�

printf���f �c �f � �f�n�� oprnd�� c� oprnd�� result�


else

printf��Runtime error� �f �c �f�n�� oprnd�� c� oprnd��


 �� end of while loop ��

 �� end of program ��

Figure ���� Code for Simple Post�x Calculator



���� OPERATORS AND EXPRESSION EVALUATION ��	

�� File� calc�c � continued ��

�� Gets one of the allowed operator� �� � � �� �� ��

char get�operator�void�

� char c


while ��c � getchar��� �� operatorp�c� �� TRUE�




return c


 

�� Function tests if c is one of the operators �� �� �� �� ��

boolean operatorp�char c�

�

switch�c� �

case "�"�

case "�"�

case "�"�

case "�"� return TRUE


default� return FALSE


 

 

Figure ��
� Code for get operator��



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

present a few new operators here� and others shown in the table will be discussed in detail in later
chapters�

����� Precedence and Associativity

The data type and the value of an expression depends on the data types of the operands and
the order of evaluation of operators which is determined by the precedence and associativity of
operators� Let us �rst consider the order of evaluation� When expressions contain more than one
operator� the order in which the operators are evaluated depends on their precedence levels� A
higher precedence operator is evaluated before a lower precedence operator� If the precedence levels
of operators are the same� then the order of evaluation depends on their associativity 
or� grouping��
In Chapter � we brie�y discussed the precedence and associativity of arithmetic operators� Table
��	 shows the precedence levels and associativity of all C operators�

In the table� there are 	� precedence levels � through 	�� higher level implies higher precedence�
The precedence levels of operators are separated by solid lines with operators within solid lines
having the same precedence level� For example� binary arithmetic operators �� �� and � have the
same precedence level which is higher than binary �� and �� Observe that the precedence of
the assignment operator is lower than all but the �comma� operator 
described below�� This is
in accordance with the rule that the expression on the right side of an assignment is evaluated
�rst� and then its value is assigned to the left hand side object� On the other hand� �function
call� has the highest precedence� since a function value is treated like a variable reference in an
expression� In any expression� parentheses may be used to over ride the precedence of the operators
� innermost parentheses are always evaluated �rst� The precedence of binary logical operators
is lower than that of binary relational operators� that of binary relational operators is lower than
that of binary arithmetic operators� and so forth� The unary NOT operator has a precedence
higher than that of all binary operators�

When operators of the same precedence level appear in an expression� the order of evaluation is
determined by the associativity� Except for the assignment operator� associativity of most binary
operators is left to right� associativity of the assignment operator and most unary operators is
right to left� Consider the following program fragment�

int x � ��� y � 	� z � ��


x � ��� � �� � 

 By the precedence� the unary minus 
�� is evalu�
ated �rst� followed by the multiplication 
�� and
then the addition� So the expression is evaluated
as ����� � ��� � 
� and �nally the result is as�
signed to x which now has the value ���

x � x � y � z
 Here the � and � have the same precedence� so by
associativity are evaluated left to right� 
x�y� � z�
This is �������� or ���� 
integer division�� so ��
is assigned to x�



���� OPERATORS AND EXPRESSION EVALUATION ���

Operator Associativity Precedence
�� Function call Left�to�Right Highest 	�
$% Array subscript
� Dot 
Member of structure�

� � Arrow 
Member of structure�
� Logical NOT Right�to�Left 	�
& One�s�complement
� Unary minus 
Negation�
�� Increment
�� Decrement
� Address�of
� Indirection

�type� Cast
sizeof Sizeof

� Multiplication Left�to�Right 	�
� Division
� Modulus 
Remainder�
� Addition Left�to�Right 		
� Subtraction
�� Left�shift Left�to�Right 	�
�� Right�shift
� Less than Left�to�Right �
�� Less than or equal to
� Greater than
�� Greater than or equal to
�� Equal to Left�to�Right �
� � Not equal to
� Bitwise AND Left�to�Right �
! Bitwise XOR Left�to�Right �
# Bitwise OR Left�to�Right �
�� Logical AND Left�to�Right �
## Logical OR Left�to�Right �

' � Conditional Right�to�Left �
�� � � Assignment operators Right�to�Left 	
� �� etc�

� Comma Left�to�Right Lowest �

Table ��	� Precedence and Associativity Table



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

x � y � z Again� associativity causes the operators to be
evaluated left to right� 
��������� i�e� 		��� or
�� 
No assignment is made here��

x � y � z Evaluated as 
��������� ���� or ��

x � y � ��
 The assignment operator associates right to left�
so y is assigned 	�� and then the result value� 	��
is assigned to x�

x � y �� � � z The highest precedence operator is �� so it is eval�
uated �rst� followed by �� and �nally the com�
parison operator� ��� The result� ��� is not less
than or equal to ��� so this expression evaluates
to False� namely ��

�x � y �� � � z� �� �x � y �� z� The parentheses force the logical operator �� to
be evaluated last� Its left operand is similar to
the last expression� only the result is now True�
or 	� The right operand evaluates the subtraction
followed by the comparison� not equal� Since �� is
not equal to ��� the result is True� and therefore�
the entire expression is True� or 	�

When a logical operator is used in an expression� the entire expression is not evaluated if the
result of the entire logical expression is clear� For example�

�x � �� �� �y � ��

�x � �� ## �y � ��

In the �rst expression� if x � � is False� there is no need to evaluate the second part of the logical
AND expression since the AND operation will be False� Similarly� in the second expression� the
logical OR expression is True if the �rst part� x � �� is True� there is no need to evaluate the
second part� C evaluates only those parts of a logical expression that are required in order to
arrive at the result of the expression�

When in doubt as to the order of evaluation within an expression� parentheses may be used to
ensure evaluation is performed as intended�

����� The Data Type of the Result

The data type of an expression value depends on the operators and the types of operands� If the
operands are all of the same type� the result is of that same type� When there are operands of
mixed type in an assignment expression� the right hand side is always converted to the data type
of the object on the left hand side� This follows common sense since the type of the object on the
left of an assignment is �xed and cannot be changed� When any other binary operator is applied



���� OPERATORS AND EXPRESSION EVALUATION ���

to operands of mixed type� the operand of a type with lower range is converted to the type of the
higher range operand before the operator is applied� and the result is of the higher range type� Of
course� values of characters in an expression are considered to be int type� Again� some examples
will illustrate�

int n � �� m � �


long large


float x � ���� y � 
��


double z � ���


large � n
 The integer value of n is converted to long and
assigned to large�

large � n � m
 Since n and m are both type int� integer division is
performed 
� � � which is 	�� and then converted
to long 
	L� which is assigned to large�

large � n � x
 Since x is a float� the integer value of n is con�
verted to float and real division 
��� � 
��� is
performed yielding ����� This result is then con�
verted to a long integer 
by truncating�� namely
�L� and assigned to large�

z � z � y
 Because z is type double� the value of y is con�
verted to double and the double precision result
of z � y is assigned to z�

n � x � z � y
 In the �rst division� n � x� since x is type float
the division will be done at float precision by
�rst converting the value of n� yielding a float re�
sult� The second division will be performed using
double precision because z is a double� by �rst
converting y to a double� The addition is now
of a float and a double� so the left operand is
�rst converted to double yielding a double result�
This is equivalent to�

�double� ��float� n � x� � z � �double� y


As with the precedence and associativity rules� when in doubt as to the type and�or preci�
sion of an expression evaluation� cast operators may be used to force conversions to the desired
type� Remember� only values of variables are converted for the purpose of computation� NOT the
variables themselves�



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

����� Some New Operators

In Table ��	 there are several operators which we have not yet discussed� Some of these are
described below� the remainder will be delayed until later chapters when we discuss the appropriate
data types�

Increment and Decrements Operators

A common operation in many programs is to increase or decrease a variable value by one� for
example� this is how we keep a count of how many times a loop is executed� C provides a
�shorthand� way of performing this operation with special increment and decrement operators�
�� and �� respectively� These are unary operators requiring one operand and may be used either
as pre�x or post�x operators meaning they either precede or follow their operands� In post�x
form� x�� increases the value of x by one� and y�� decreases the value of y by one� Likewise� in
pre�x form� ��x increases the value of x by one� and ��y decreases the value of y by one� However�
there is a di�erence between the pre�x and post�x operators� In the case of pre�x operators� the
operation is performed �rst and then the expression evaluates to the new value of its operand� For
post�x operators� the expression �rst evaluates to the current value of the operand and then the
operators are applied� For example� if x is 	� the expression ��x �rst increments x to � and then
evaluates to the value �� On the other hand� again if x is 	� the expression x�� �rst evaluates to
the value of x� namely 	� and then increments x to �� Here is a code fragment showing the use of
the increment and decrement operators�

int x� y� z�� z�� z�


x � �


y � �


x��
 The value of x is incremented to �� The value of
this expression is �� but is discarded�

y��
 The value of y is decremented to �� The value of
this expression is also �� but is also discarded�

z� � x�� � y��
 The expression x�� evaluates to the current value
of x� �� and then x gets the value �� Likewise� y��
evaluates to � and then y is incremented to �� The
variable z� gets the value of 
 � �� or ��

z� � ��x � ��y
 First� x is incremented to �� and ��x evaluates to
�� Likewise ��y increments to y to � and evaluates
to �� so z� gets the value of 	 � 
 or ��



���� OPERATORS AND EXPRESSION EVALUATION ���

z� � x�� � ��y
 The expression� x��� evaluates to � and then in�
crements x to �� The expression� ��y� decrements
y to � and evaluates to �� So z� gets the value of
	 � �� or 		�

The value of

��x � x��

is implementation dependent� A compiler may either evaluate the �rst term �rst or the second
term �rst� It is therefore not possible to say what the expression will evaluate to� For example�
assume that x is initially 	� If the �rst expression is evaluated �rst� then the expression is�

� � �

i�e� �� and x is �� On the other hand� if the second term is evaluated �rst� then the expression is�

� � �

i�e� �� and x is ��

Increment and decrement operations can just as well be written as assignment expressions�

x � x � �


y � y � �


The use of increment and decrement operators does not accomplish anything that cannot be done
by appropriately placed assignments� These operators were designed to be used with machines
that have increment and decrement registers� in which case the compiler can take advantage of
these registers and improve the performance of the program� However� many machines today do
not have these registers� so most compilers translate expressions with increment and decrement
operators in exactly the same manner as they do assignment expressions� but these operators
remain as a �shorthand� syntax for compact programs�

The syntax of the increment and decrement operators is�

�� �Lvalue�
�� �Lvalue�
�Lvalue� ��

�Lvalue� ��

The operand must be and �Lvalue�� i�e� a location into which a value can be placed� 
So far� we
have seen that only a variable name may be used as an �Lvalue�� We will see other possibilities



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

Composite Equivalent

x �� 

 x � x � 



y �� ��
 y � y � ��


x �� �
 x � x � �


y �� 

 y � y � 



x �� 	
 x � x � 	


Table ���� Composite Assignment Operators and Their Equivalents

in Chapter ��� The precedence and associativity of increment and decrement operators is given in
Table ��	� Here are some examples of their use in program code�

for �i � �
 i � MAX
 i���

printf��This is a test�n��


The message� This is a test will be printed MAX

times�

n � �


while �n�� � ���

printf��Value of n is �d�n�� n�


The expression n�� evaluates to the value of n

before it is incremented� The loop will print the
values 	��� � � � �	� for n�

n � �


while ���n � ���

printf��value of n is �d�n�� n�


The expression ��n evaluates to the value of n

after it is incremented� The loop will print the
values 	��� � � � �
 for n�

Composite Assignment Statements

The above operators provide a �shorthand� way of increasing or decreasing a variable by one�
but sometimes we would like to increase or decrease 
or multiply� divide or mod� by some other
value� C provides �short hand� operators for these as well� called the composite assignment

operators� These operators and their equivalent are shown in Table ����

The general syntax of a composite assignment operator is�

�Lvalue� �op�
 �expression�

where �op� may be one of the binary arithmetic operators� �� �� �� �� or �� The left operand of
these operators must be an �Lvalue�� but the right operand may be an arbitrary �expression��

Again� there is no particular advantage in using the composite assignment operators over the
simple assignment operator except that they produce a somewhat more compact program� The
precedence and grouping for composite assignment operators given in Table ��	 shows they are
the same as the assignment operator� Figure ��	� shows the factorial function 
see Figure ����
using these new operators�



���� OPERATORS AND EXPRESSION EVALUATION ��


�� File� mathutil�c � continued ��

�� Function returns long factorial of n� ��

long factcomp�int n�

� int i


long prod


prod � �
 �� initialize ��

for �i � �
 i �� n
 i��� �� loop from � to n ��

prod �� i
 �� compute cumulative product ��

return prod
 �� return product ��

 

Figure ��	�� Factorial Function Using Composite Operators

Conditional Expression

Sometimes in a program we would like to determine the value of an expression based on some
condition� For example� if we had two variables� x and y� and we wanted to assign the larger value
to the variable� z� We could write and if statement to perform this task as follows�

if �x � y� z � y


else z � x


Another way of stating this in words is that z should be assigned the value of y if x � y or x�
otherwise� The 
operator� symbols ' and � may be used to form such a conditional expression as
follows�

z � x � y ' y � x


The expression to the right of the assignment operator is evaluated �rst as follows� If x � y� the
expression evaluates to the value of the expression after '� i�e� y� Otherwise� it evaluates to the
value of the expression after �� i�e� x� In other words� the expression evaluates to the larger of x
and y which is then assigned to the variable� z�

As another example� we can write an expression that evaluates to the absolute value of x�

x � � ' �x � x

If x is negative� the expression evaluates to �x 
a positive value�� otherwise to x�

The syntax for writing a conditional expression is�

�expr�� � �expr�� � �expr��



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� File� mathutil�c � continued��

double maxdbl�double x� double y�

�

return �x � y ' x � y�


 

Figure ��		� Function maxdbl Using a Conditional Expression

The �rst operand� �expr��� is evaluated� if true� the result of the entire expression is the value of
� expr��� Otherwise� the result is the value of �expr��� The conditional operator is a ternary
operator since it requires three operands�

An if statement can always perform the task that a conditional expression does� Whether to
use one or the other is a matter of choice and convenience� Figure ��		 shows a function which
returns the value of the larger of two double arguments�

The Comma Operator

The comma operator� �� provides a way to combine several expressions into a single expression�
The syntax is�

�expression�� 
 �expression��

The semantics are that �expression�� is evaluated �rst� followed by �expression�� with the value
of the entire expression being that of �expression��� These expressions may be arbitrary expres�
sions� including another comma expression�

The comma expression is useful where the syntax of a statement requires a single expression�
but we have several expressions to be evaluated� such as a for statement where several variables
are used to control the loop� Here� the comma operator may be used to write multiple initialization
and update expressions� As an example� we will use comma operators to write a function that
computes and prints Fibonacci numbers� Fibonacci numbers are natural numbers in the sequence�

�� �� �� �� 
� �� ��� ���

Each number of the sequence is computed by adding the previous two numbers of the sequence�
Thus� we must start with the �rst two numbers� which are both 	� then the next number is
	 � 	 � �� the next one is 	 � � � �� the next one is � � � � �� and so on�

We will write a driver� main��� which calls a function� fib��� to print the Fibonacci numbers�
The function starts with two variables� which are initialized to the values of the �rst two numbers
	 and 	� Each new number is computed as a sum of the previous two until the limit is reached�
Figure ��	� shows the code�



���� OPERATORS AND EXPRESSION EVALUATION ��	

�� File� fib�c

Program computes and prints Fibonacci numbers less than a

specified limit of ����

��

�include �stdio�h�

�define LIM ���

void fib�int lim�


main��

�

printf�����Fibonacci Numbers����n��


printf��Limit is �d �n�� LIM�


fib�LIM�


 

�� Function computes and prints the Fibonacci numbers less than lim� ��

void fib�int lim�

� int i� j� n


printf����n��n��
 �� print the first two fib� numbers ��

for �i � �� j � �� n � �
 n � lim
 i � j� j � n� �

n � i � j
 �� compute the next fib� number ��

if �n � lim�

printf���d�n�� n�
 �� print the next fib� number ��

 

 

Figure ��	�� Revised Fibonacci



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

The function� fib��� prints Fibonacci numbers less than its argument� lim� It uses a for

loop with comma expressions for the �rst and last expressions� The �rst expression initializes two
variables� i and j to 	� with i assumed to be the �rst and j assumed to be the second number in
the sequence� The variable� n� the next number in the sequence� is initialized to zero so that the
loop condition may be tested the �rst time with some value of n less than lim� The sum of i and
j is the next number in the sequence� n� which is computed and printed in the loop body� The
variables are then updated to the new values� j assigned the value of n and i assigned the value
of j� Thus� i and j always have the values of the last two Fibonacci numbers in the sequence�
The process is repeated until n exceeds lim�

The output of the program is shown below�

���Fibonacci Numbers���

Limit is ���

�

�

�

�




�

��

��

��





��

The sizeof Operator

The exact amount of space reserved in memory for di�erent data types depends on the imple�
mentation� Typically� a character is assigned � bits or one byte of space� integers are generally
assigned � or � bytes of storage� float numbers usually require at least four bytes� and double at
least eight bytes� Table ��� shows some typical examples for the HP
���� an HP UX Unix system�
and the IBM PC� a DOS environment� It is sometimes necessary to use the sizes of objects in
expressions� and since the sizes are implementation dependent� to make our programs portable�
we should not build the values into our programs as constants� For any implementation� size of
an object can be easily determined by the use of the sizeof operator with syntax�

sizeof �expression�

The unary operator� sizeof� yields the size� in bytes� of the type of its operand� The operand
may be an arbitrary expression� however� the expression is NOT evaluated� the sizeof expression
simply evaluates to the number of bytes used for the type of the result� For example� the expression�
sizeof x� evaluates to the size of x in bytes� Here is a code fragment using the sizeof operator�



���� OPERATORS AND EXPRESSION EVALUATION ���

Data types HP
��� IBM PC
Bytes Bytes

char 	 	
int � �
short int � �
long int � �
float � �
double � �
long double 	� �

Table ���� Space allocation in Bytes for data types

int x


double y


printf��Size of x is �d bytes�n�� sizeof x�


printf��Size of x�y is �d bytes�n�� sizeof �x�y��


The �rst printf�� statement will print the size 
in bytes� of the int type object� x� The second
will print the size of the value of the expression� x�y� As we saw earlier� this addition would be
done in double precision and the result would be a double� Remember� the expression� x�y is not
evaluated� only its size is used by the sizeof operator� Also remember that sizeof is an operator�
like �� not a function call� It has a precedence and associativity like any other operator 
shown in
Table ��	�� That is why the parentheses are required in that second printf��� the precedence of
sizeof is higher than �� Without the parentheses� the expression would be evaluated as�

�sizeof x� � y

It is also possible for the operand of sizeof to be a parenthesized type name� like a cast operator�
rather than a variable name� for example�

sizeof �int�

sizeof �float�

sizeof �long int�

sizeof �unsigned long int�

We can easily write a program to determine the sizes of di�erent types for the host implemen�
tation� The code is shown in Figure ��	�� A sample output for the HP
��� is�

���Sizeof operator���



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� File� size�c ��

main��

� int x


double y


printf�����Sizeof operator����n�n��


printf��Size of x is �d bytes�n�� sizeof x�


printf��Size of x�y is �d bytes�n�n�� sizeof �x�y��


printf��Size of data types in bytes��n��


printf��Size of int type is �d�n�� sizeof�int��


printf��Size of long int is �d�n�� sizeof�long int��


printf��Size of short int is �d�n�� sizeof�short int��


printf��Size of unsigned int is �d�n�� sizeof�unsigned int��


printf��Size of float is �d�n�� sizeof�float��


printf��Size of double is �d�n�� sizeof�double��


 

Figure ��	�� Testing sizeof Operator

Size of x is � bytes

Size of x�y is � bytes

Size of data types in bytes�

Size of int type is �

Size of long int is �

Size of short int is �

Size of unsigned int is �

Size of float is �

Size of double is �

Whenever the size of a type is required in a program� the sizeof operator should be used
rather than the actual size� since the actual value is implementation dependent� Such a use of
the sizeof operator in a program ensures that the program will be portable from one type of
computer to another�

��� Common Errors

	� A result may be outside the range of values possible for a given data type� Use a data type
with greater range and�or precision�

�� Prototypes are not declared� instead� default integer type declaration is assumed for func�
tions� If there is no prototype declaration for a function and if the argument in the function
call is a float� it is converted to double� If the formal parameter in the function de�nition



���� COMMON ERRORS ���

is declared as a float� there is a possible mismatch� A double object passed as an argu�
ment might be accessed as a float resulting in a possible wrong value� The actual situation
depends on the compiler� Here is an example�

�� File� default�c

Program illustrates problems with default declarations for functions�

��

�include �stdio�h�

main��

� float x


x � ���


printf��Truncated Square of �f � �d�n�� x� trunc�square�x��


 

int trunc�square�float z�

�

return �int� �z � z�


 

The function trunc square�� returns integer type and main�� uses the default declaration
for trunc square��� The float argument� x in the function call in main�� is converted to
double� But trunc square�� declares a float formal parameter� z� An attempt will be
made to access a double object as a float� The function may not access the correct value
passed as an argument� Thus� it is always best to use function prototypes to avoid confusion�

�� An expression is written without consideration of precedence and associativity of the oper�
ators� For example�

while �x � scanf���d�� �n� �� EOF�

���

Wrong� The scanf�� value is compared �rst with EOF and the result of the comparison is
assigned to x� Using parentheses�

while ��x � scanf���d�� �n�� �� EOF�

���

x is assigned the value returned by scanf��� and the value of x is then compared with EOF�
Examples where associativity must be considered include�

a � ��
 b � 

 c � ��
 d � �


a � b � c is ��


a � b � c � d is �

a � d � b � c is �

�� Increment and decrement operators are used incorrectly� Remember that post�x implies
increment�decrement after evaluation and pre�x implies increment�decrement before evalu�
ation�



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

��� Summary

In this chapter we have tied up some loose ends and formalized some of the concepts from previous
chapters� We have seen how the �nite number of bits available to represent numbers limits the
range and precision of the numbers stored in the computer� We have introduced additional data
types which can extend the range and increase precision as needed for some applications� We
have discussed the data types void 
when no value is expected� and enum 
for improving program
readability�� We have also shown how user de�ned names for data types can be de�ned using
typedef with syntax�

typedef �existing�type�speci	er� �new�type�speci	er��

We have extended our available control constructs by introducing two variations on the looping
constructs provided in the language� the for statement and the do���while statement� with
syntax�

for ��expr��� �expr��� �expr��� �statement� equivalent to

�expr���
while ��expr��� f

�statement�
�expr���

g
and

do
�statement�

while ��expression���

We have also described how expressions are evaluated� including the determination of the
type of the result and the order of applying operators� giving the full precedence and associa�
tivity table for all C operators 
Table ��	�� We have described some new operators� such as the
increment�decrement operators�

�� �Lvalue�
�� �Lvalue�
�Lvalue� ��

�Lvalue� ��

composite assignment operators�

�Lvalue� �op�
 �expression�

the conditional expression�



��	� SUMMARY ���

�expr�� � �expr�� � �expr��

the comma operator�

�expression�� 
 �expression��

and the sizeof operator�

sizeof �expression�

Other operators in the table such as the indirection� array subscripting� structure accessing� and
bitwise operators will be described in later chapters�



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

��� Exercises

	� If x is 	�� and z is ���� what is the output of the following�

if �z � x�

printf��z � �d� x � �d�n�� z� x�


�� With the following declarations�

int a � ��� b � �
� c � �



float x � �



double y � ��


long int m � �
L


What are the values and types of the following expressions�

a � b � c � x


a � b � x � c


a � b � y � c


a � b � m � c


x � a � b


x � �int� a � b


�� Evaluate the expressions following the declarations�

int x� y� z


float u� v� w


x � ��
 y� ��
 z � ��


x � z � y � y


x � x � y � z


x � x � y � z

�� Evaluate the expressions�

int x� y� z


float u� v� w


x � ��
 y� ��
 z � ��


u � 
��
 v � ����
 w � ����


x � w � y � y


u � z � y � y


u � w � y � y


u � x � y � w � u � v




��
� EXERCISES ��


�� What is the output of the following program 

�define PRHAPS

�define TWICEZ z � z

main��

� int w� x� y� z


float a� b� c


w � ��
 x � 

 y � �

 z � �


a � ���
 b � ���
 c � ���


�ifdef PRHAPS

x � �



y � 



�endif

printf���a�� �d �d�n�� x� y�


printf���b�� �d�n�� TWICEZ � ��


printf���c�� �f �f�n�� w � z � a � c� z � w � b � c�


printf���d�� �d�n�� z � y � x�


 

�� What will be the output in the following cases�


a� �define SWAP�x� y� int temp
 temp � x
 x � y
 y � temp

main��

� int x� � ��� x� � ��


SWAP�x�� x��


printf��x� � �d� x� � �d�n�� x�� x��


 


b� �define SWAP�x� y� �int temp
 temp � x
 x � y
 y � temp
 

main��

� int x� � ��� x� � ��


SWAP�x�� x��


printf��x� � �d� x� � �d�n�� x�� x��


 


c� �define SWAP�x� y� int temp
 temp � x
 x � y
 y � temp

main��

� int x� � ��� x� � ��


printf��Swapping Values�n��


SWAP�x�� x��


printf��x� � �d� x� � �d�n�� x�� x��


 



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� Write a while and a do���while loop to read and echo long integers until end of �le� Allow
for the possibility that the �rst input is an end of �le�

�� Write a for loop to print out squares of integers in the sequence �� 	�� 	�� ��� ��� etc� until
	���


� Given the following declarations�

int x � ���� y


What are the values of x and y after each of the following expressions is evaluated 
the
expressions are evaluated in sequence� 

y � x��


y � ��x


y � ��x


y � x��


	�� What are the values of the following expressions considered sequentially�

x � ���
 y � ���


y � y�� � ��x


y � ��y � x��


y � ��y � �


y � � � x��


		� Evaluate the following�

x � ���
 y � ���


y �� � � x��


y �� � � ��x


y �� x


	�� Evaluate the following�

x � ���
 y � ���
 z � �



z � y � x ' x � y


z � �z �� x �� z �� y� ' z � x � y � z � x � y




���� PROBLEMS ��	

��	 Problems

	� Write a program to calculate the roots of a quadratic equation�

a � x� � b � x� c � �

The program should repeatedly read the set of coe�cients a� b� and c� For each set� calculate
the roots if and only if b � b is not less than � � a � c� Otherwise� write a message that the
roots are not real and proceed to the next set of coe�cients� The two roots of a quadratic
are�

x� �
�b�p

b� � � � a � c
� � a

x� �
�b�p

b� � � � a � c
� � a

Use the sq root�� function de�ned in the chapter�

�� Write a function to �nd exp�x� whose value is given by the Taylor series�

	 �
x�

	�
�

x�

��
�

x�

��
� � � �

where n� is n factorial� Write and use a function� power�x� n�� which returns the nth power
of x� where n is an integer� Use a function� fact��� to compute the factorial� Write a driver
that reads input values of x� and �nds exp�x�� Use as many terms as needed to make values
before and after an additional term very close�

�� Write a function to evaluate sin�x� using the expansion shown below� Use it in a program
to �nd the sine of values read until end of �le�

sin
x� �
x�

	�
� x�

��
�

x�

��
� x�

��
�

x�


�
� � � �

�� Write a function� cos�x�� using the expansion below and use it in a program to �nd the
cosine of values read until EOF�

cos
x� � 	� x�

��
�

x�

��
� x�

��
�

x	

��
� � � �

�� What are the limitations on the accuracy of the above expansions 

�� Write a function that returns the number of ways that r items can be taken together out of
n items� The value of combination is�

comb
n� r� �
n�


n � r�� � r�
Use long integers for factorials�

�� Extend the range of possible values for Problem � by cancelling out common factors in
numerator and denominator�



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION

�� Write a program that uses Newton�s method to �nd the roots of the equation�

f
x� � x� � � � x� � � �

Newton�s method uses successive approximations� Start with a guess value for root� The
improved value of root is given by�

newroot � root � f
root�

f �
root�

where f
root� is the value of the function when x equals root� and f �
root� is the value of
the function below when x equals root�

f �
x� � � � x� �


� Write a program that �nds the approximate value of an integral of a function whose four
sample values s�� s�� s�� s� are speci�ed at time instants t�� t� � h� t� � � � h� t� � � � h�
The user should be asked for the value of the interval size� h� and starting instant� t�� The
approximate value of an integral from t� to t� � � � h is the sum of the area under each
rectangle made up of the sample value and the inter�sample distance� i�e��

s� � h� s� � h� s� � h� s� � h

	�� Write a program that reads in the coe�cients and the right hand side values for two linear
simultaneous equations� Solve the equations for the unknowns and print the solution values�
The equations are�

a
���� � x� � a
���� � x� � c�

a
���� � x� � a
���� � x� � c�

where a
����� a
����� c�� a
����� a
����� and c� are the coe�cients to be read� and x� and x�
are the unknowns� To solve the equations� multiply the �rst equation coe�cients and right
hand side by �a�����

a�����
and add the corresponding values to those of the second equation� The

new� modi�ed value of a
���� will be zero� so the second equation can be solved for x�� and�
substituting the value of x� in the �rst equation� solve for x��

		� Given coe�cients and the right hand side of two simultaneous equations� verify if a given
set of values for x� and x� is correct� If the left hand side and the right hand side are within
a small error margin the solution is assumed to be correct� Let the margin of error be a
speci�able value with an assumed default value�

	�� Write a menu�driven program to solve and verify two linear equations as per Problems 	�
and 		� Allow the following commands� get data� display data� solve equations� display
solution� verify solution� help� and quit�

	�� Write a program to determine the current and the power consumed in an electrical resistor

load� of 	���� ohms if it is connected to a battery of 	� volts� Power consumed in a resistor
is V ��R� where V is the volts across the resistor and R is the resistor value in ohms� The
current in a resistor is given by V�R�



���� PROBLEMS ���

	�� Use for loops to write a program that �nds all prime numbers less than a speci�ed value�

	�� Use do���while loops to write Problem 	��

	�� Write a program that reads a year� a month� and a day of the month� It then determines
the number of the day in the year� 
Use the de�nition of a leap year given in Problem �����
Use enumeration type for the months� and a switch statement which uses the number of
days in the year prior to the �rst of each month�

	�� Modify Problem 	� so the program reads the day of the week on the �rst of January and
determines the day of the week for the speci�ed date�

	�� Write a program to read the current date in the order� year� month� and day of the month�
The program then prints the date in words� Today is the nth day of Month of the year Year�
Example�

Today is the ��th day of December of the year �����

	
� If the GCD of two numbers� m and n is 	� they have no common divisor� Write a program
to �nd all pairs of numbers� in the range � to ��� that have no common divisors� 
Refer to
Problem ��	� for the de�nition of GCD��

��� A rational number is maintained as a ratio of two integers� e�g� ������ ������ etc� Rational
number arithmetic adds� subtracts� multiplies and divides two rational numbers� Write a
program that repeatedly reads and adds two rational numbers� The program should print
the result in each case as a rational number�

�	� Write a function to subtract two rational numbers�

��� Write a function to multiply two rational numbers�

��� Write a function to divide two rational numbers�

��� Write a function to reduce a rational number� A reduced rational number is one in which
all common factors in the numerator and the denominator have been cancelled out� For
example� ����� is reduce to ���� ���	� is reduced to ���� and so forth� The GCD can be
used to reduce a rational number�

��� Modify the rational numbers programs in Problems �� through �� so the result is �rst
reduced before it is printed�



��� CHAPTER �� NUMERIC DATA TYPES AND EXPRESSION EVALUATION


