
Chapter �

Functions and Files

In this Chapter� we tie up some loose ends concerning some of the built in functions provided
by the C language� In previous chapters we have been using such functions in our programming
examples to do data input and output� functions such as scanf��� printf� getchar��� and
putchar��� These routines are part of a library of standard routines� As we have seen� we can use
these functions by including the header �le in which they are declared �in this case �stdio�h���
These header �les contain the prototypes for functions as well as macros that are needed for their
use�

Previously� when we have needed routines for other operations �e�g� testing if a character is
a digit�� we have written our own� Such operations are common enough in C programs that the
implementors have included prede�ned routines to perform them� These routines are collectively
called the C Standard Library� We begin this Chapter by describing a few other built in functions
provided in the Standard Library� describing their use and using them in a few sample programs�
A longer �though not complete� listing of the Standard Library� together with descriptions� is
provided in Appendix C�

We next give a more thorough description of our I�O functions� scanf�� and printf��� Finally�
we discuss variations of the standard I�O routines� which allow direct access to data stored in �les�

��� The C Standard Library

We have already used several I�O routines from the standard library	 scanf��� printf��� getchar��
and putchar��� Many other useful routines are provided in one or more libraries supplied with
the compiler or in header �les� When a function in one of these libraries is used� the name of
the library must be supplied to the linker� Otherwise� the linker is unable to resolve the reference
to that function� If the function resides in the standard library� the linker does not need to be
supplied the name� The linker always searches the standard library by default for any unresolved
functions used in the program�

Standard header �les supplied with the compiler declare function prototypes for standard
library functions in several categories� They also de�ne data types� symbolic constants� and
macros� Header �les must be included in the source program if any of the de�nitions� macros� or
function prototypes declared in them are to be used�

Many of the functions we have de�ned in our example programs are available either as standard
macros in a header �le or as functions in the standard library� We could have used these standard

�

�� CHAPTER �� FUNCTIONS AND FILES

routines in many of our examples� However� we wrote our own versions because it is instructive
to see how functions are written�

The following are descriptions of some of the commonly used routines� Similar descriptions of
other routines will be provided as we use them� A listing of ANSI standard library routines is
provided in Appendix C� It must be understood that the standard is a suggested standard� and
all vendors of C compilers may not follow the suggested standard exactly�

The listing below speci�es what header �le must be included� if any� before the routine listed
may be used� It also speci�es which �le contains the prototypes� if applicable�

����� Character Processing Routines

Character Classi�cation Routines

is��� Prototype�

int isalnum�int c��

int isalpha�int c��

int isascii�int c��

int iscntrl�int c��

int isdigit�int c��

int isgraph�int c��

int islower�int c��

int isprint�int c��

int ispunct�int c��

int isspace�int c��

int isupper�int c��

int isxdigit�int c��

in� �ctype�h�

Returns�

isalnum TRUE if c is a letter or a digit� ��A���Z�� �a���z�� �	���
���
isalpha TRUE if c is a letter� ��A���Z�� �a���z��
isascii TRUE if c is in the range
�����
iscntrl TRUE if c is a control character� �
�
�� ����
isdigit TRUE if c is a digit� ��	���
��
isgraph TRUE if c is a graphical character� i�e� a printable character except for space�

�

�����
islower TRUE if c is a lower case letter� ��a���z��
isprint TRUE if c is a printable character� �
������
ispunct TRUE if c is a punctuation character�
isspace TRUE if c is a space� tab� newline� or any white space character� ����
�
��
isupper TRUE if c is an upper case letter� ��A���Z��
isxdigit TRUE if c is a hexadecimal digit� ��	���
�� �A���F�� �a���f��

Description� These are macros that classify a character� c� given as an integer type
�ASCII� value� They return non�zero if TRUE and zero if FALSE�

���� THE C STANDARD LIBRARY
��

Character Conversion Routines

toascii Prototype� int toascii�int c�� in� �ctype�h�

Returns� converted value of c�

Description� Converts an integer� c� to ASCII format by clearing all but the lower
seven bits� The value returned is in the range
�����

tolower Prototype� int tolower�int c�� in� � ctype�h�

Returns� Lower case value of c if c was upper case� c otherwise�

toupper Prototype� int toupper�int c�� in� � ctype�h�

Returns� Converts c to upper case if c is lower case� otherwise� c is left unchanged�

Note that all the above library character routines use an int type argument� Since the value
of a character is its ASCII value of type int� passing a char type argument to these routines is
the same as passing an int type ASCII value�

Character Routines Programming Examples

Let us use some of the above library routines to write a variation on our previous program to pick
out words in the input text� The revised program only picks out valid words� namely identi�ers�
We will assume that a valid identi�er starts with a letter and may be followed by any number of
letters and�or digits� White space delimits an identi�er� otherwise� it is ignored� Any character
that does not belong in an identi�er is an illegal character� and also delimits an identi�er�

We will need to test each character to see if it is a letter� a digit� a white space� etc� We will
use library functions isalpha��� isalnum��� and isspace�� to test for these characters� The
descriptions for them states that we must include �le �ctype�h�� In addition to �nding and
printing identi�ers� the program also keeps a count of them�

The only change in the previous algorithm is that now we start a word if and only if it starts
with a letter� Once a word is started� it continues as long as characters are letters or digits�
otherwise� the word is terminated and counted� The program is shown in Figure ����

We test if the �rst character after white space is a letter� If so� we build an identi�er� Otherwise�
if it is EOF� we terminate the loop� Otherwise� it must be an illegal character�

Sample Session	

���Print Identifiers���

Type text� terminate with EOF

Programming is easy
Programming

is

easy

once an algorithm is developed
once

an

algorithm

�� CHAPTER �� FUNCTIONS AND FILES

�� File
 ident�c

Program reads characters one at a time until EOF� It prints out

each identifier in the input text and counts the total number of

identifiers� It ignores white space except as a delimiter for an

identifier� An identifier starts with an alphabetic letter and may be

followed by any number of letters or digits� All other characters are

considered illegal�

��

�include �stdio�h�

�include �ctype�h�

main��

� int cnt � 	�

signed char c�

printf�����Print Identifiers����n�n���

printf��Type text� terminate with EOF �Z or �D��n���

c � getchar���

while �c �� EOF� �

while �isspace�c�� �� skip leading white space ��

c � getchar���

if �isalpha�c�� � �� if a word starts with a letter ��

while �isalnum�c�� � �� while c is letter or digit ��

putchar�c�� �� print c ��

c � getchar��� �� read next char ��

�

putchar���n��� �� end identifier with a newline ��

cnt��� �� increment cnt ��

�

else if �c �� EOF� �� if end of file ��

break� �� break out of loop ��

else � �� otherwise� it is an illegal char ��

printf��Illegal character �c�n�� c��

c � getchar���

�

�

printf��Number of Identifiers � �d�n�� cnt��

�

Figure ���	 Code for ident�c

���� THE C STANDARD LIBRARY
��

is

developed

�D

Number of Identifiers � �

����� Math Routines

There are many mathematical routines in the standard library� such as abs��� pow��� sqrt���
rand��� sin��� cos��� tan��� and so forth� The prototypes for these are de�ned in the header
�le� �math�h�� which must be included whenever these functions are used in a program� In
addition� on Unix systems� the math library is maintained separately from the standard library�
thus requiring that it be linked when the code is compiled� This can be done with the compiler
command	

cc filename�c �lm

The option �l speci�es that a library must be linked with the code and the m speci�es the math
library� Note that this option MUST appear as the last item on the command line�

Most of the functions listed above are self explanatory �and are described in detail in Appendix
C�� As an example� let us look at the function� rand�� which generates pseudo�random integers
in the range of numbers from
 to the largest positive integer value� The numbers cannot be com�
pletely random because the range is limited� However� for the most part� the numbers generated
by rand�� appear to be quite random� The prototype for the function is	

int rand�void��

Each time the function is called� it returns a random integer number� Figure ��� shows an example
which generates and prints some random numbers�

Sample Session	

���

��	

�	
��

�	
	

��� �

The random number generator will always start with the same number unless it is �seeded� �rst
by calling the function� srand��� The prototype for it is	

void srand�unsigned x��

In the example in Figure ��
� we seed the random number generator with a user supplied number�
The program then �nds random throws for a single dice� After the random generator is seeded�
every random number generated� n� is evaluated modulo �� i�e� n � � is evaluated� This results
in numbers from
 to �� We add one to obtain the dice throws from � to ��

Sample Session	

���Single Dice Throw Program���

�� CHAPTER �� FUNCTIONS AND FILES

�� File
 rand�c

Program uses random number generator to print some random

numbers�

��

�include �stdio�h�

�include �math�h�

main��

� int i�

int x�

for �i � 	� i � � i��� �

x � rand���

printf���d�n�� x��

�

�

Figure ���	 Small program to generate random numbers

�� File
 dice�c

Program throws a single dice repeatedly�

��

�include �stdio�h�

�include �math�h�

main��

� int i� d��

printf�����Single Dice Throw Program����n�n���

printf��Type a random unsigned integer to start
 ���

scanf���d�� !i��

srand�i��

for �i � 	� i � � i��� �

d� � rand�� � � � ��

printf��throw � �d�n�� d���

�

�

Figure ��
	 Program for generating random dice values

���� FORMATTED INPUT�OUTPUT
��

Type a random unsigned integer to start
 �����
throw � �

throw � �

throw � �

throw � �

throw �

Similarly� we can write a program that draws a card from a full deck of �� cards as shown
in Figure ���� It starts by seeding the random number generator before its use� Next� a random
number is generated and evaluated modulo ��� resulting in a random number between
 and
��� representing a card� For a number� n� the value n � �� is in the range
 through
� each
corresponding to a suit	 say
 is clubs� � is diamonds� � is hearts� and
 is spades� In addition� n
� �� � � evaluates to a number in the range � through �
� corresponding to a card in a suit	 say
� is ace� � is deuce� � � � � �� is jack� �� is queen� and �
 is king�

Sample Session	

���Single Card Draw Program���

Type a random unsigned integer to start
 �����
Diamond �

Heart Jack

Heart �

Diamond Queen

Diamond �	

The next program uses the library function� sqrt��� to obtain square roots of randomly gen�
erated numbers� The function� sqrt��� requires its argument to be of type double� and it returns
type double� In the program shown in Figure ���� the randomly generated whole number is
assigned to a double variable before �nding its square root�

Sample Session	

���Square Root Program � Random Numbers���

Sq�Rt� of ����						 is ����	�	"

Sq�Rt� of ��	�						 is ����	�" �

Sq�Rt� of �	
���						 is �	��"
 	��

Sq�Rt� of �	
	�						 is ���	� ���

Sq�Rt� of ��� ��						 is �	"�
��
 "

These have been just a few examples of using routines available in the math library� A complete
listing of math routines is provided in Appendix C� Rather than writing our own functions all the
time� we will make use of library functions in our code wherever we can in the future�

��� Formatted Input�Output

We have been using the I�O built�in functions printf�� and scanf�� which are the primary
routines for formatted output and input in C �the �f� stands for formatted�� We have already

�
 CHAPTER �� FUNCTIONS AND FILES

�� File
 card�c

Program draws a card each time from a full deck of � cards�

��

�include �stdio�h�

�include �math�h�

�define CLUB 	

�define DIAMOND �

�define HEART �

�define SPADE �

�define ACE �

�define JACK ��

�define QUEEN ��

�define KING ��

main��

� int i� d�� card� suit�

printf�����Single Card Draw Program����n�n���

printf��Type a random unsigned integer to start
 ���

scanf���d�� !i��

srand�i�� �� seed the random number generator ��

for �i � 	� i � � i��� �

d� � rand�� � �� �� draw a card ��

suit � d� � ��� �� find the suit 	������ ��

card � d� � �� � �� �� find the card �� �� ���� �� ��

switch �suit� � �� print suit ��

case CLUB
 printf��Club ��� break�

case DIAMOND
 printf��Diamond ��� break�

case HEART
 printf��Heart ��� break�

case SPADE
 printf��Spade ��� break�

�

switch �card� � �� print the card within a suit ��

case ACE
 printf��Ace��� break�

case JACK
 printf��Jack��� break�

case QUEEN
 printf��Queen��� break�

case KING
 printf��King��� break�

default
 printf���d�� card��

�

printf���n���

�

�

Figure ���	 Program for randomly picking a card

���� FORMATTED INPUT�OUTPUT
��

�� File sqrt��c

Program computes and prints square roots of numbers randomly

generated�

��

�include �stdio�h�

�include �math�h�

main��

� int i�

double x�

printf�����Square Root Program � Random Numbers����n�n���

for �i � 	� i � � i��� �

x � rand���

printf��Sq�Rt� of �f is �f�n�� x� sqrt�x���

�

�

Figure ���	 Code for �nding the square root of random numbers

discussed many of the conversion speci�cations� we now present a more complete description of the
formatted I�O functions together with examples� �While our discussion here concerns printf��
and scanf��� it applies equally well to conversion speci�cations for fprintf�� and fscanf��

described in the next Section�

����� Formatted Output� printf��

As we have seen� printf�� expects arguments giving a format string and values to be printed�
The printf�� prototype� in stdio�h� is	

int printf�char �� �����

The �rst argument of printf�� is the format string �we will see what the above type declaration
means in the next chapter�� The number of remaining arguments depends on the number of
conversion speci�ers in the format string� In C� an ellipsis� i�e� �� � � �� is used to indicate an
arbitrary number of arguments� The return value of printf�� is an int giving the number
of bytes output� if successful� otherwise it returns EOF� This information from printf�� is not
generally very useful� and we often simply ignore the return value�

The function� printf��� converts� formats� and prints its arguments on the standard output
using the conversion speci�cations given in the format string� The format string is made up of
two kinds of characters	 regular characters� which are simply copied to the output� and conversion
speci�cation characters� A conversion speci�cation indicates how the corresponding argument
value is to be converted and formatted before being printed� The number of conversion speci��
cations in the format string must match exactly the number of arguments that follow� otherwise�
the results are unde�ned� The data type of the argument should also match the data type it

�� CHAPTER �� FUNCTIONS AND FILES

will be converted to� for example� integral types for decimal integer formats� float or double

types for �oating point or exponential formats� and so on� If the proper type is not used� the
conversion is performed anyway assuming correct data types and the results can be very strange
and unexpected� Of course� character values are integral types� so characters can be converted
to ASCII integer values for printing� or printed as characters� We have already seen most of the
conversion characters� Table ��� gives a complete list with their meanings� We will discuss some
examples� given the following declarations and initializations	

int i�

char c�

float f��

double d��

char �s�

long x�

i � ���

c � �e��

f� � ���� �		

d� � ���� �		

s � �This is a test��

x � ���� �"�
�

Di�erent conversion characters may be used to print the values of these variables� The space used
to print a value is called the �eld� and by default� is exactly the space needed to print the value�
We show examples of conversion characters and default output below	

Conversion Variable Output
Speci�er

�d i ��
�o i ��
�x i ��
�u i ��
�c c e
�d c �	�
�c i

�s s this is a test
�f f� or d� ������						
�e f� or d� ������		E�		�
�g f� or d� �����

So far� we have used very simple conversion speci�ers� such as �d� �f� and �c� A complete
conversion speci�cation starts with the character � and ends with a conversion character� Between
these two characters� special format characters may be used which can specify justi�cation� �eld
width� �eld separation� precision� and length modi�cation� The characters that follow the � char�
acter and precede the conversion characters are called format characters� All format characters
are optional� and if they are absent their default values are assumed� �We will indicate the default
value in each case below�� The syntax of a complete conversion speci�er is	

���� FORMATTED INPUT�OUTPUT
�

Character Conversion

d The argument is taken to be an integer and converted to decimal integer
notation�

o The argument is taken to be an integer and converted to unsigned octal
notation without a leading zero�

x The argument is taken to be an integer and converted to unsigned
hexadecimal notation without a leading 	x�

u The argument is taken to be an unsigned integer and converted to
unsigned decimal notation�

c The argument is taken to be an ASCII character value and converted
to a character�

s The argument is taken to be a string pointer� Unless a precision is
speci�ed as discussed below� characters from the string are printed out
until a NULL character is reached� �Strings will be discussed further in
the next chapter��

f The argument is taken to be a float or double� It is converted to
decimal notation of the form �	
ddd�dddddd� where the minus sign shown
in square brackets may or may not be present� The number of digits� d�
after the decimal point is � by default if no precision is speci�ed� The
number of digits� d� before the decimal is as required for the number�

e The argument is taken to be a float or double� It is converted to
decimal notation of the form �	
d�ddddddE��
	
xxx� where the leading
minus sign may be absent� There is one digit before the decimal point�
The number of digits� d� after the decimal point is � if no precision is
speci�ed� The E signi�es the exponent� ten� followed by a plus or minus
sign� followed by the exponent� The number of digits in the exponent�
x� is implementation dependent� but not less than two�

g The same as �e or �f whichever is shorter and excludes trailing zeros�

Table ���	 Conversion Speci�er Characters for printf��

�� CHAPTER �� FUNCTIONS AND FILES

�	DD�ddlX

where X is one of the conversion characters from Table ���� The other format characters must
appear in the order speci�ed above and represent the following formatting information	 �the
corresponding characters are shown in parentheses��

Justi�cation �	� The �rst format character is the minus sign� If present� it speci�es
left justi�cation of the converted argument in its �eld� The default
is right justi�cation� i�e� padding on the left with blanks if the �eld
speci�ed is wider than the converted argument�

Field Width �DD� The �eld width is the amount of space� in character positions� used to
print the data item� The digits� DD� specify the minimum �eld width�
A converted argument will be printed in a �eld of at least this size�
if it �ts into it� otherwise� the �eld width is made large enough to �t
the value� If a converted argument has fewer characters than the �eld
width� by default it will be padded with blanks to the left� unless left
justi�cation is speci�ed� in which case� padding is to the right�

Separator ��� A period is used as a separator between the �eld width and the pre�
cision speci�cation�

Precision �dd� The digits� dd� specify the precision of the argument� If the argument
is a float or double� this speci�es the number of digits to the right of
the decimal point� If an argument is a string� it speci�es the maximum
number of characters to be printed from the string�

Length Modi�er �l� The length modi�er� l� �ell� indicates that an integer type argument
is a long rather than an int type�

Some examples of format speci�cations using the previous variable types and values are shown
below� where the �eld width is shown between the markers� # and #�

Conversion Variable Output

Field Pos� 	���� �"�
	���� �"�

$$$

��	d i # ��#

���	d i #�� #

#

��	f f� #���� �						

���	f f� #���� �						

��	��f f� # ���� �		#

���	��f f� #���� �		 #

� c c # E#

�� c c #E #

��	s s #This is a test

���� FORMATTED INPUT�OUTPUT
��

��	s s # This is a test#

���	s s #This is a test #

��	��	s s # This is a #

�ld x #���� �"�

����ld x #���� �"�
 #

����� Formatted Input� scanf��

Like printf��� scanf�� expects its �rst argument to be a format string� but unlike printf���
the remaining arguments are addresses of the variables in which to put the data that is read� The
prototype for scanf��� also in stdio�h� is	

int scanf�char �� �����

As we�ve said� the returned value is the number of items read� or EOF� The format string controls
the input order� conversion of the input data to the speci�ed type� and format speci�cation�
Each conversion speci�cation appearing in the format string is applied� in turn� to the next input
data item in the input stream� After the speci�ed conversion� the item is placed where the next
succeeding argument points� so each of the arguments must be an address�

Besides the conversion speci�cations that start with �� the format string may also include
regular characters� Regular white space characters in the format string are ignored� Any regular
non�white space characters must be matched exactly in the input stream� For example	

scanf��x� �d�� !x��

The input stream must include the characters x�� which are matched by the corresponding char�
acter in the format string� before an integer value is read� A valid sample input for this format
string is	

x
 ����

The characters� x
� are �rst matched� then the integer� ��
�� is read and assigned to the variable�
x� If the characters� x
� are not matched in the input stream� no input is possible� and scanf��

will return the value
�
As before� a conversion speci�cation starts with a � and ends with one of the conversion

characters given in Table ���� Between � and the conversion character� there can be an optional
assignment suppression character� �� followed by an optional number indicating the maximum�eld
width� The maximum�eld width speci�es that no more than that number of characters in the input
streammay be used for the next data item� The converted result is stored where the corresponding
argument points unless the assignment suppression character is used� If the suppression character
is used� the result is discarded� The conversion characters with their meanings are given in Table
���� All of these except c and s may be preceded by the length modi�er� l �ell�� where� in the
case of integral type data� the corresponding argument should be long and in the case of �oating
point data� the argument should be double� For example� with the following declarations	

int i� k�

char c�

�� CHAPTER �� FUNCTIONS AND FILES

Character Conversion

d The input is expected to be a decimal integer� The corresponding
argument should be an integer address�

o The input is expected to be an octal number� The corresponding argu�
ment should be an integer address�

x The input is expected to be a hexadecimal number� The corresponding
argument should be an integer address�

c The input is expected to be a character� Any character including white
space may be input without being skipped over� The corresponding
argument should be a character address�

s The input is expected to be a string of characters� and the correspond�
ing argument should be a character pointer to an array of characters
large enough to accommodate the string plus the terminating NULL

character� �Arrays are discussed in Chapter ��� The input will skip
over initial white space and will terminate when a white space charac�
ter is encountered in the input stream�

f The input is expected to be a �oating point number and the corre�
sponding argument should be a float address� The input may have
a sign� followed by a string of digits� optionally followed by a decimal
point and a string of digits� which may be followed by an E or e and a
signed or unsigned integer exponent�

e Same as f�

Table ���	 Conversion Speci�er Characters for scanf��

���� DIRECT I�O WITH FILES
��

float f��

double d��

char s%�	&�

long x�

Consider the following statements with the input as shown below each statement�

scanf��Integer
 ��d �f�� !i� !f���

Input is	

Integer� �������

First� the regular characters� Integer� are matched� Then a �eld of � is used to read the integer�
����� Finally� a float� ����	 is read� The integer� ��
�� will be stored in i� and ����
 will be
stored in f��

scanf����s ��c �c�� s� !c��

Surprises are everywhere

A �eld of � is used to read a string� �Surp�� which is placed in s� The next character� �r�� will
be read and discarded� and the next character� �i�� will be stored in c�

scanf���s ��s �d�� s� !i��

Surprise number �

This time the string �Surprise� will be stored in s� the next string �number� will be discarded�
and the integer � will be stored in i�

��� Direct I�O with Files

So far all our programs have used standard �les for input and output� normally the keyboard
and screen� Unless the standard �les are redirected� users must enter data as needed� which may
become inconvenient or impractical as the amount of data gets large� However� if redirection is
used to read input data from other �les� then ALL input must come from redirected �les� which
means the programs cannot interact with the user� Practical programs require the ability to use
�les for I�O as well as to interact with users via standard �les� For example� data may be needed
repeatedly� by di�erent programs� over a period of time� Such data should be stored in �les on
disks or other peripheral devices� and programs should be able to retrieve data from these �les as
needed� In addition� programs can save useful data into �les for later use�

In this Section� we describe some variations on our previous Input�Output routines which
behave similarly� but access data directly from or to �les�

�� CHAPTER �� FUNCTIONS AND FILES

����� Character I�O

We have written programs for processing characters using the routines getchar�� and putchar��

which read or write single characters from or to the standard input or output� The standard
library provides additional� more general� routines which read or write single characters from or
to any �le �including stdin or stdout�� We will illustrate the use of these routines with two short
examples�

Our next task is to read text input from a non�standard input �le and compute the frequency
of occurrence of each digit in the text	

FREQ	 Read input from a speci�ed text �le and calculate the frequency of occurrence of each
digit in the �le�

Our task calls for us to read textual data from an input �le� In order for the program to be
able to read from a �le� the �le must be identi�ed to the program� This process is called opening

the �le� Likewise� when our use of the data in a �le is complete� the �le should be closed� Opening
a �le informs the program where data is to be read from� and initializes a system data structure
which keeps track of how far reading has progressed in the �le �along with other information
needed by the operating system�� Most �les in C programs are treated as a stream of characters
by the library routines that access them� and so� an open �le is sometimes also referred to as
a stream� Closing a �le relinquishes all use of the �le from the program back to the operating
system� When a �le is opened� the input starts at the beginning of the �le and continues until the
end of �le is reached� The standard �les� stdin and stdout� behave the same way� but they are
opened automatically at the beginning of the program� They cannot be re�opened and should not
normally be closed�

We can now write an algorithm for our task of counting frequency of occurrence of digits
in a �le �or stream�� We will use an array� digit freq%& to store the frequency of each digit�
For each character� ch read� if ch is a digit symbol� then ch � �	� is the numeric equivalent of
that digit and we will use digit freq%ch � �	�& to store the frequency of the digit� That is�
digit freq%	& will store frequency of digit character �	�� digit freq%�& will store frequency for
���� and so on� Here is the algorithm	

initialize array digit$freq%& to zero

open input file

while NOT EOF� read a character from input file stream

if a character ch is a digit

increment digit$freq%ch � �	�&

print results to standard output

close input file

We begin by initializing the array� digit freq%& to zero and each time a digit character is en�
countered� an appropriate frequency is incremented� The program implementation is shown in
Figure ��� and assumes that the �le to be read is named test�doc�

The input �le� test�doc consists of a single line shown below	

�� �" ��
 � ��

Sample Session	

���Digit Occurrence Counter���

���� DIRECT I�O WITH FILES
��

�� File
 cntdigits�c

This program reads characters from a file stream and counts the

number of occurrences of each digit�

��

�define MAX �	

�include �stdio�h�

�include �ctype�h� �� for isdigit�� ��

main��

�

int digit$freq%MAX&�i�

signed char ch�

FILE � fin�

printf�����Digit Occurrence Counter����n�n���

�� initialize the array ��

for �i � 	� i � MAX� i���

digit$freq%i& � 	�

fin � fopen��test�doc�� �r��� �� open input file ��

if ��fin� � �� if fin is a NULL pointer ��

printf��Unable to open input file
 test�doc�n���

exit�	�� �� exit program ��

�

while ��ch � getc�fin�� �� EOF� � �� read a character into ch ��

if �isdigit�ch�� �� if ch is a digit ��

digit$freq%ch � �	�&��� �� increment count for digit ch ��

�

fclose�fin��

�� summarize ��

for �i � 	� i � MAX� i���

printf��There are �d occurrences of �d in the input�n��

digit$freq%i&�i��

�

Figure ���	 Code for Counting Digits

 CHAPTER �� FUNCTIONS AND FILES

There are 	 occurrences of 	 in the input

There are � occurrences of � in the input

There are � occurrences of � in the input

There are 	 occurrences of � in the input

There are � occurrences of � in the input

There are � occurrences of in the input

There are 	 occurrences of � in the input

There are � occurrences of " in the input

There are � occurrences of � in the input

There are � occurrences of
 in the input

Let us �rst give a summary explanation� In the declaration section of the function� main� a �le
pointer variable� fin� is declared to be of type FILE �� The type FILE is de�ned using a typedef

in �stdio�h� as a special data structure containing the information about a �le need to access
it� After the array� digit freq%&� is initialized to zero� the �le� test�doc� is opened using the
standard library function� fopen��	

fin � fopen��test�doc�� �r���

The function� fopen��� takes two arguments	 a string which gives the name of the physical �le�
and a second string which speci�es the mode ��r� �for read� indicates an input �le�� If the �le can
be opened� fopen�� returns a �le pointer which can be used to access the corresponding stream�
If the �le cannot be opened� fopen�� returns a NULL pointer� so the program tests if the returned
value of the �le pointer� fin� is NULL and� if so� terminates the program after a message is printed�
If the �le opened �i�e� fin is not NULL�� then fin can be thought of as a �handle� on the �le which
is passed to an appropriate I�O routine to access the data� In our case� a character is read from
the stream using the standard library function� getc��	

ch � getc�fin�

The function� getc��� reads a character from the stream accessed by the �le pointer� fin� It
returns the value of character read if successful� and EOF otherwise� In the program� each character
read is examined to see if it is a digit� if it is� the count for that digit is incremented� Once the
end of input �le is reached� the �le is closed with the statement	

fclose�fin��

Finally� the program prints the results accumulated in the array�
Let us now examine some details� When a �le is opened� it is associated with a �le bu�er that

serves as the interface between the physical �le and the program� A program reads or writes a
stream of characters from or to a �le bu�er� A �le stream �bu�er� pointer must be maintained
to mark the next position in the �le bu�er� This information is stored in the data structure� of
type FILE� pointed to by the �le pointer� Once a physical �le is opened� i�e� associated with a �le
bu�er� and a �le pointer is initialized� a program uses only the �le pointer�

The derived data type� FILE� is de�ned in �stdio�h� using a typedef statement� and contains
information about a �le� such as the location of a �le bu�er� the current position in the bu�er�
�le mode �read� write� append�� whether errors have occurred� and whether an end of �le has
occurred� Users need not know the details of this data structure� instead� it is used to de�ne
pointer variables to a FILE type data item to be accessed by the library functions� For example�

���� DIRECT I�O WITH FILES

�

FILE �fin� �fout�

declares two �le pointer variables� fin and fout� It is now possible to associate these FILE
pointers with desired physical �les� We use the terms stream and �le pointer interchangeably with
FILE pointer� Standard �les are always open and standard �le pointer variables are available to
all programs� They are named stdin� stdout� and stderr�

The process of opening a �le connects a physical �le and associates a mode with the FILE

pointer� The mode speci�es whether a �le is opened for input� for output� or for both� The �le
open function� fopen��� associates a physical �le with a �le bu�er or stream and returns a FILE

pointer that is used to access the �le� Here is the prototype	

FILE � fopen�char � fname� char � mode��

The mode string� �r�� speci�es that the �le is to be opened for reading �i�e� an input �le�� �w�
speci�es writing mode �i�e� an output �le�� and �a� speci�es append mode �i�e� both an input and
an output �le�� If the �le was opened successfully� fopen�� returns a pointer that will access the
�le stream� If it was not possible to open the �le for some reason� fopen�� returns a NULL pointer
�a pointer whose value is zero � in C� the zero address is guaranteed to be an invalid address��
It is the programmer�s responsibility to check to see if the returned pointer is NULL� The most
common reason why a �le cannot be opened for reading is that it does not exist� i�e� an erroneous
�le name has been used�

Once a �le is opened� the library function� getc��� reads single characters from the �le stream�
The argument passed to getc�� must be a �le pointer� and it returns the �integer� value of a
character read or EOF if an end of �le is reached�

Files should be closed after their use is completed� Failure to close open �les may destroy �les
if a program terminates prematurely� The library function that closes a �le is fclose��� whose
argument must be a FILE pointer� The process of closing a �le frees the �le bu�er�

In the above program� we speci�ed the name of the input �le in the code itself� If the program
is to be used with any other input �le� we would have to modify the program and recompile�
Instead� a �exible program should ask the user to enter �le names as needed�

Our next task is to copy one �le to another� The algorithm is	 simple�

get input and output file names

open files for input and output

while NOT EOF� read a character ch from input stream

write ch to output stream

close files

The library routine� putc�ch� output� writes a character� ch� to a �le stream� output� The
program is shown in Figure ����

Sample Session	

���File Copy Program � Character I�O���

Input file
 ccopy�c

Output file
 xyz�c

File copy completed

� CHAPTER �� FUNCTIONS AND FILES

�� File
 ccopy�c

This program copies an input file to an output file one

character at a time� Standard files are not allowed�

��

�include �stdio�h�

main��

� FILE �input� �output�

char infile%� &� outfile%� &�

signed char ch�

printf�����File Copy Program � Character I�O����n�n���

printf��Input file
 ���

scanf���s�� infile��

printf��Output file
 ���

scanf���s�� outfile��

input � fopen�infile� �r���

if �input �� NULL� �

printf����� Can�t open input file ����n���

exit�	��

�

output � fopen�outfile� �w���

if �output �� NULL� �

printf����� Can�t open output file ����n���

exit�	��

�

while ��ch � getc�input�� �� EOF�

putc�ch� output��

fclose�input��

fclose�output��

printf��File copy completed�n���

�

Figure ���	 Code to copy one �le to another

���� DIRECT I�O WITH FILES

The program �rst reads the input and output �le names� We use scanf�� to read the �le names
into strings� infile and outfile� These �les are then opened for input and output� respectively�
If either of the �les cannot be opened� an error message is printed and the program is terminated
by an exit�� call� If both �les are opened successfully� the copying is done in a loop until EOF�
The loop reads a character from input into ch which is then written to the stream indicated by
outfile using putc��� When EOF is reached� the �les are closed and a message printed�

The �le routines� getc�� and putc�� can be used with standard �les as well� We just use the
prede�ned �le pointers for the standard �les	

ch � getc�stdin��

putc�ch� stdout��

The above programs terminate if an attempt to open a �le is unsuccessful� As an improvement to
these programs� friendly programs should allow the user to rectify possible errors in entering �le
names�

����� Formatted I�O

When we read or write numeric data from or to standard �le streams� scanf�� and printf��

convert character input to internal numeric values and vice versa� Similar functions are available
for non�standard �les� The function� fscanf�� reads formatted input from a �le and fprintf��

writes formatted output to a �le� The only di�erence between scanf��� printf�� and fscanf���
fprintf�� is that the latter require an additional argument which speci�es the input �le stream�
For example� to read and write an integer from and to a �le stream� we use	

fscanf�inp� ��d�� !n��

fprintf�outp� ��d�� n��

where inp and outp� are FILE pointers� The other arguments are the same as those for scanf��
and printf��� the format string gives the conversion speci�cations� and the arguments that follow
reference the objects where data is to be stored or whose values are to be written� The return
value of fscanf�� is the same as scanf��	 number of items read or EOF�

Our next task is to read exam scores into an array from a �le and determine the average� the
maximum� and the minimum� It is assumed that the data �le of exam scores is prepared using an
editor� The algorithm is simple enough	

get input file name

open input file

read exam scores into an array

process the array to find average� maximum� and minimum

We will use a function� proc aray��� to process the array� It will return the average but will
indirectly store the maximum and minimum values in the calling function� The program is shown
in Figure ����

The sample session assumes that the scores are in an input �le scores�dat prepared using an
editor and shown below	

� CHAPTER �� FUNCTIONS AND FILES

�� File
 avgfile�c

This program reads exam scores from a file and processes them to

find the average� the maximum� and the minimum� ��

�include �stdio�h�

�define MAX �		

float proc$aray�int ex%&� int lim� int �pmax� int �pmin��

main��

� int max� min� n� lim � 	� exam$scores%MAX&�

char infile%� &�

float avg�

FILE � inp�

printf�����Exam Scores
 Average� Maximum� Minimum����n�n���

printf��Input File
 ���

scanf���s�� infile��

inp � fopen�infile� �r���

if ��inp� �

printf��Unable to open input file�n���

exit�	��

�

while �lim � MAX !! fscanf�inp� ��d�� !n� �� EOF�

exam$scores%lim��& � n�

fclose�inp��

if �lim �� 	� exit�	��

avg � proc$aray�exam$scores� lim� !max� !min��

printf��Average � �f� Maximum � �d� Minimum � �d�n��

avg� max� min��

�

�� This function computes the average of an array� the maximum and

the minimum� Average is returned� the others are indirectly

stored in the calling function� ��

float proc$aray�int ex%&� int lim� int �pmax� int �pmin�

� int i� max� min�

float sum � 	�	�

max � min � ex%	&�

for �i � 	� i � lim� i��� �

sum �� ex%i&�

max � ex%i& � max ' ex%i&
 max�

min � ex%i& � min ' ex%i&
 min�

�

�pmax � max�

�pmin � min�

return sum � lim�

�

Figure ���	 Code for avg�le�c

���� COMMON ERRORS

�

�"

"

��

�

Sample Session	

���Exam Scores
 Average� Maximum� Minimum���

Input File
 scores�dat
Average � "��� 				� Maximum � ��� Minimum � �"

The driver opens the input �le and reads data into the array� exam scores%&� The number of
elements are counted by lim� If lim is zero� the program is terminated� otherwise� the program
calls proc aray�� to process the array for the average� the maximum� and the minimum� In the
call to proc aray��� main�� passes as arguments exam scores� lim� and pointers to max and min�

The function� proc aray��� initializes values of local variables� max and min� to the value of
the �rst element of the array� ex%	&� It then traverses the array� maintains a cumulative sum of
the scores� and updates the values of max and min using the following conditional expressions	

max � ex%i& � max ' ex%i&
 max�

min � ex%i& � min ' ex%i&
 min�

Here� if an array element� ex%i&� is greater than max� max is assigned ex%i&� otherwise� max is
assigned max� Similarly� the minimum is updated when an array element is smaller than the
minimum� Finally� the function indirectly stores values of maximum and minimum� and returns
the value of the average score�

��� Common Errors

�� Use of scanf�� to read strings with white space� When scanf�� is used to read a string�
only part of an input string may be read	 it skips over leading white space� and reads a
string until the next white space�

scanf���s�� msg��

Input
 this is a string

With the above input� scanf�� will read �this�� and NOT the whole string� into memory
pointed to by msg� However� printf�� will print the entire string until the terminating
NULL�

��� Summary

In this Chapter we have discussed various features available to the programmer in the C standard
library� While we have used some of the functions in previous chapters� particularly those for
I�O� we have given a more detailed description of the library� and the standard I�O routines

� CHAPTER �� FUNCTIONS AND FILES

provided there� We have seen that frequently used operations on characters for classifying or
converting which we have written for ourselves in the past� are available from the library� In
addition� routines for common math operations are also provided in the math library �which may
not be automatically linked by the compiler�� We have given a few short programs illustrating
the use of some of these functions� A more complete list of available library routines is provided
in Appendix C�

We have also given a complete description of the formatted I�O functions� scanf�� and
printf�� detailing the options available for formatting input and output� Finally� we have dis�
cussed variations on the I�O routines available� both for characters and formatted� which allow
direct access to data in �les from within a program� These new routines include getc��� putc���
fscanf��� and fprintf��� as well as functions for managing connection to the physical �les	
fopen�� and fclose���

The full power of the C standard library is now available for future program development in
later chapters�

���� EXERCISES

�

��	 Exercises

�� main��

� long n�

scanf���d�� !n��

�

�� main��

� long n � ��L�

printf���d�n�� n��

�

� main��

� double x�

scanf���f�� !x��

�

�� If x is �

 and z is �

� what is the output of the following	

if �z � x�

printf��z � �d� x � �d�n�� z� x��

� CHAPTER �� FUNCTIONS AND FILES

��
 Problems

�� Write a program to make a table of decimal� octal� and hexadecimal unsigned integers from

 to ����

�� Write a program to print a calendar for a month� given the number of days in the month
and the day of the week for the �rst day of the month� For example� given that there are

 days and the �rst of the month is on Tuesday� the program should print the calendar for
the month�

CALENDAR FOR THE MONTH

sun mon tue wed thu fri sat

� � � �

� " �
 �	 �� ��

�� �� � �� �" �� �

�	 �� �� �� �� � ��

�" �� �
 �	

� Write a program to read the current date in the order	 year� month� and day of month� The
program then prints the date in words	 Today is the nth day of Month of the year Year�
Example	

Today is the ��th day of December of the year �			�

�� Write a program that prints a calendar for a year given the day of the week on the �rst day
of the year� �Use Problem
�� for the de�nition of a leap year��

�� Write a program that prints a calendar for any year in this century given the day of the
week for the �rst day of the current year�

�� Write a function that returns the value of a random throw of two separate dice�

�� Write the following functions	

first�$card�� that draws a random card from a full deck�

second�$card�� that draws a random card from the remaining deck�

Similarly� write third�$card�� and fourth�$card���

For the last three functions� you will need arguments that indicate what cards have already
been drawn from the deck�

�� Write a program using the functions of Problem � to play a game of �black jack� with the
user� Each side is dealt cards alternately� First each side is dealt two cards� but one at a
time� Then� if necessary a maximum of one more card is allowed for each player� The player
with the highest score� not exceeding ��� wins� In a tie� the user wins� The program should
reshu�e the cards and play the game as long as the user wishes� The score is obtained by
summing the value of each card� The value of a card is the face value of the card� except
that an ace can be either � or �� and all picture cards are �
�

���� PROBLEMS

�

�� Randomly toss a coin	 repeat and count the number of heads and tails in �

 tosses� �

tosses� �

 tosses�

�
� Write a program to play a board game with the user� The game uses a throw of two dice�
The rules of the game are as follows� Each player takes a turn and is allowed a succession
of throws� If a player�s �rst throw is seven or eleven� he�she loses the turn� Otherwise� the
player�s score is increased by the value of each throw until the dice show a seven or a eleven�
The turns continue between the user and the program until a pre�set limit for the score is
reached�

��� Write a program to compare the routine sq root�� written in Chapter � with the standard
library routine� How close are the routines�

��� Write a function that returns the hypotenuse� given the two sides of a right angled triangle�
A hypotenuse is the square root of the sum of the squares of the two sides of a right angled
triangle�

�
� Find all the angles of a right angled triangle if the lengths of the two sides are given� Since
it is a right triangle� one angle is pi � �� Also� the ratio of the two sides in a right triangle
gives the tangent of one of the other angles� Therefore� one angle is the arctangent of the
ratio of the two sides� Use a library function to get the arctangent of a value� The other
angle is easily obtained since the three angles must add up to pi�

��� Use library routines to compare values of sine� cosine� and exponential with those calculated
by Chapter
 problems
�� through
�
�

��� Write a menu�driven program that handles the grades for a class� The program allows the
following commands�

Get data
 gets id numbers and integer scores for a set of � projects from a

file� Assume that the id numbers start at 	 and go up to a maximum of

�

Print data
 prints the scores�

Average scores
 averages each set of scores�

Change scores
 allows the user to make changes in scores for any project

and for any id number�

��� Write a program that reads a text of characters from a �le and keeps track of the frequency
of usage of each letter� digit� and punctuation�

��� Write a menu�driven program that reads input data from a �le� The program reads and
stores for each student the ID number� course numbers� credits� and grades� Assume a
maximum of
 courses per student� The program should compute and store the GPR for
each student� At the end of input� the program writes to a �le as well as to the standard
output all the input data and GPR for all students�

��� Write a program that shu�es and deals out all �� cards of a deck of playing cards to � players�
Each card is dealt in sequence around a table to players in the following order	 west� north�
east� south� Print out the hands of each player� You must use a random generator� but
discard a possible card if it has already been dealt out� Use an array of �� elements to keep
track of the cards already dealt out�

�
 CHAPTER �� FUNCTIONS AND FILES

��� Write a program to play the game of �� with a limit of �ve cards for each player� Assume
the program plays south and deals the cards� The other three players are in order west�
north� and east� Cards must be dealt randomly�

�
� Write a program that reads a positive integer n� it then generates a set of n random numbers
in a range from
 to ��� Store and count the frequency of occurrence of each number� Print
the frequency of each number�

��� Use an array to read from a �le and store the sample values of an experiment at regular
intervals� Plot the graph of the sample values versus time� Time should increase vertically
downwards� Use ��� to mark a point� Write a program to read in sample values and call a
function to plot the values�

��� Repeat Problem ��� but plot a bar chart for the sample values�

