
Chapter �

Two Dimensional Arrays

In Chapter � we have seen that C provides a compound data structure for storing a list of related
data� For some applications� however� such a structure may not be su�cient to capture the
organization of the data� For example� in our payroll task� we have several pieces of information
�hours worked� rate of pay� and regular and over time pay� for a list of employees� We have
organized such data as individual arrays� one for each �column	� to form the payroll data base

but conceptually� this information is all related� In this chapter we will introduce a data structure
which allows us to group together all such information into a single structure � a two dimensional
array� For a data base application� we can think of this �D organization as an array of arrays� As
another example of where such a structure is convenient� consider an array of names� We have
seen that we can store a name in a string� which is an array of characters� Then an array of strings
is also an array of arrays� or a two dimensional array�

In this chapter we will discuss how we can declare two dimensional arrays� and use them in
applications� We will see how we can access the data in such a structure using indices and pointers�
and see how this concept can be extended to multi
dimensional arrays� We will present examples
of � dimensional arrays for data base applications� string sorting and searching� and solutions
to systems of simultaneous linear algebraic equations� useful in scienti�c� engineering� and other
applications� e�g� electronic circuit analysis� economic analysis� structural analysis� etc� The one
restriction in the use of this data type is that all of the data stored in the structure must be of
the same type� �We will see how we can remove this restriction in the next chapter��

��� Two Dimensional Arrays

Our �rst task is to consider a number of exams for a class of students� The score for each exam is
to be weighted di�erently to compute the �nal score and grade� For example� the �rst exam may
contribute ��� of the �nal score� the second may contribute ���� and the third contribute ����
We must compute a weighted average of the scores for each student� The sum of the weights for
all the exams must add up to �� i�e� ����� Here is our task�

WTDAVG� Read the exam scores from a �le for several exams for a class of students� Read
the percent weight for each of the exams� Compute the weighted average score for each student�
Also� compute the averages of the scores for each exam and for the weighted average scores�

We can think of the exam scores and the weighted average score for a single student as a data
record and and represent it as a row of information� The data records for a number of students�

���

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

then� is a table of such rows� Here is our conceptual view of this collection of data�

exam� exam� exam� weighted avg
student� �� �� �� ��
student� �� �� ��� ��
student� �� �� �� ��
���
studentn �� �� �� ��

Let us assume that all scores will be stored as integers
 even the weighted averages� which will
be computed as �oat� will be rounded o� and stored as integers� To store this information in a
data structure� we can store each student�s data record� a row containing three exam scores and
the weighted average score� in a one dimensional array of integers� The entire table� then� is an
array of these one dimensional arrays � i�e� a two dimensional array� With this data structure�
we can access a record for an individual student by accessing the corresponding row� We can also
access the score for one of the exams or for the weighted average for all students by accessing each
column� The only restriction to using this data structure is that all items in an array must be
of the same data type� If the student id is an integer� we can even include a column for the id
numbers�

Suppose we need to represent id numbers� scores in � exams� and weighted average of scores
for �� students
 we need an array of ten data records� one for each student� Each data record
must be an array of �ve elements� one for each exam score� one for the weighted average score�
and one for the student id number� Then� we need an array� scores���� that has ten elements

each element of this array is� itself� an array of � integer elements� Here is the declaration of an
array of integer arrays�

int scores��������

The �rst range says the array has ten elements� scores���� scores���� � � � scores���� The
second range says that each of these ten arrays is an array of �ve elements� For example� scores���
has �ve elements� scores������� scores������� � � � scores������� Similarly� any other element
may be referenced by specifying two appropriate indices� scores�i��j�� The �rst array index
references the ith one dimensional array� scores�i�
 the second array index references the jth

element in the one dimensional array� scores�i��j��
A two dimensional array lends itself to a visual display in rows and columns� The �rst in

dex represents a row� and the second index represents a column� A visual display of the array�
scores�������� is shown in Figure ���� There are ten rows� ��
��� and �ve columns ��
��� An
element is accessed by row and column index� For example� scores�	��
� references an integer
element at row index � and column index ��

We will see in the next section that� as with one dimensional arrays� elements of a two dimen

sional array may be accessed indirectly using pointers� There� we will see the connection between
two dimensional arrays and pointers� For now� we will use array indexing as described above and
remember that arrays are always accessed indirectly� Also� just as with one dimensional arrays� a
�D array name can be used in function calls� and the called function accesses the array indirectly�
We can now easily set down the algorithm for our task�

���� TWO DIMENSIONAL ARRAYS ���

col� � col� � col� � col� � col� �

row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������
row � scores������ scores������ scores������ scores������ scores������

Figure ���� Rows and Columns in A Two Dimensional Array

read the number of exams into no�of�exams

get weights for each of the exams

read exam scores and id number for each student

into a two dimensional array

for each student� compute weighted average of scores in the exams

compute average score for each of the exams and

for the weighted average

print results

We can easily write the top level program driver using functions to do the work of reading scores�
getting the weights� computing the weighted averages� printing scores� averaging each set of scores�
and printing the averages� The driver is shown in Figure ����
We have declared an array� scores����� with MAX rows and COLS columns� where these macro

values are large enough to accommodate the expected data� We have used several functions�
which we will soon write and include in the same program �le� Their prototypes as well as those
of other functions are declared at the head of the �le� In the driver� getwts
� reads the weights
for the exams into an array� wts��� returning the number of exams� The function� read scores
��
reads the data records into the two dimensional array� scores����� and returns the number of
data records� The function� wtd avg
�� computes the weighted averages of all exam scores� and
avg scores
� computes an average of each exam score column as well as that of the weighted
average column� Finally� print scores
� and print avgs
� print the results including the input
data� the weighted averages� and the averages of the exams�
Let us �rst write getwts
�� It merely reads the weight for each of the exams as shown in Figure

���� The function prompts the user for the number of exam scores� and reads the corresponding
number of �oat values into the wts�� array� Notice that the loop index� i begins with the value
�� This is because the element wts���� corresponding to the student id column� does not have a
weight and should be ignored� After the weights have been read� we �ush the keyboard bu�er of
any remaining white space so that any kind of data �including character data� can be read from

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� wtdavg�c

Other Source Files� avg�c

Header Files� avg�h

This program computes weighted averages for a set of exam scores for

several individuals� The program reads scores from a file� computes

weighted averages for each individual� prints out a table of scores�

and prints averages for each of the exams and for the weighted average�

��

�include �stdio�h�

�define MAX 	�

�define COLS �

int getwts
float wts����

FILE �openinfile
void��

int read�scores
int ex���COLS�� int lim� int nexs��

void wtd�avg
int ex���COLS�� int lim� int nexs� float wts����

void avg�scores
int ex���COLS�� int avg��� int lim� int nexs��

void print�scores
int ex���COLS�� int lim� int nexs��

void print�avgs
int avg��� int nexs��

main
�

� int no�of�stds� no�of�exams�

int avg�COLS��

int scores�MAX��COLS��

float wts�COLS��

printf
����Weighted Average of Scores����n�n���

no�of�exams � getwts
wts��

no�of�stds � read�scores
scores� MAX� no�of�exams��

wtd�avg
scores� no�of�stds� no�of�exams� wts��

print�scores
scores� no�of�stds� no�of�exams��

avg�scores
scores� avg� no�of�stds� no�of�exams��

print�avgs
avg� no�of�exams��

�

Figure ���� Driver for Student Scores Program

���� TWO DIMENSIONAL ARRAYS ���

�� File� wtdavg�c � continued ��

�� Gets the number of exams and weights for the exams� flushes

the input buffer and returns the number of exams�

��

int getwts
float wts���

� int i� n�

printf
�Number of exams� ���

scanf
��d�� �n��

for
i � �� i �� n� i��� �

printf
�Percent Weight for Exam �d� �� i��

scanf
��f�� �wts�i���

�

while
getchar
� � !�n!�

�

return n�

�

Figure ���� Code for getwts
�

the input� The function returns the number of exams� n�

We will assume that the data for the student scores is stored in a �le in the format of one line
per student� with each line containing the student id followed by the exam scores� To read this
data into a two dimensional array� we must �rst open the input �le� This is done by the function
openfile
� shown in Figure ���� which prompts for the �le name and tries to open the �le� If
the �le opens successfully� the �le pointer is returned� Otherwise� the function prints a message
and asks the user to retype the �le name� The user may quit at any time by typing a newline
or end of �le� If an end of �le is typed or the typed string is empty� the program is terminated�
Once the input �le is opened� we read data items into the array� �lling in the elements one row
�student� at a time� We use two index variables� row and col� varying the row to access each row
in turn
 and� within each row� we vary col to access elements of each column in turn� We will
need a doubly nested loop to read the data in this manner� The function is given the number of
students� the variable stds� and the number of exams� nexs� We will use column � to store the
student id numbers and the next nexs columns to store the scores� Thus� in each row� we read
nexs�� data values into the array� This is done by the function� read scores
�� also shown in
Figure ���� The input �le is �rst opened using openfile
�� and the data records are read into the
array called ex���� within the function� The function returns the number of records read either
when EOF is reached or when the array is �lled� Each integer data item is read from a �le� fp� into
a temporary variable� n� This value is then assigned to the appropriate element� ex�row��col��
When all data has been read� the input �le is closed and the number of records read is returned�

Notice in main
� in Figure ���� we pass the �D array to read scores
� just as we did for
one dimensional arrays� passing the array name� As we shall see in the next section� the array

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� wtdavg�c � continued ��

�� Opens the input file and returns the file pointer� ��

FILE �openinfile
void�

� FILE �fp�

char infile�	���

printf
�Input File� RETURN to quit� ���

while
gets
infile�� �

if
 �infile� exit
��� �� empty string� exit ��

fp � fopen
infile� �r���

if
 fp� � �� no such file� continue ��

printf
�Unable to open input file � retype�n���

continue�

�

else return fp� �� file opened� return fp ��

�

exit
��� �� end of file typed� exit ��

�

�� Opens the input file and reads scores for nexs exams� returns

the number of individual student records�

��

int read�scores
int ex���COLS�� int stds� int nexs�

� int row� col� n� x�

FILE � fp�

fp � openinfile
��

for
row � �� row � stds� row���

for
col � �� col �� nexs� col��� �

x � fscanf
fp� ��d�� �n��

if
x �� EOF� �

fclose
fp��

return row�

�

ex�row��col� � n�

�

fclose
fp��

return row�

�

Figure ���� Code for openfile
� and read scores
�

���� TWO DIMENSIONAL ARRAYS ���

name is a pointer that allows indirect access to the array elements� The two dimensional array
as as argument must be declared in the function de�nition as a formal parameter� In Figure
���� we have declared it as ex���COL� with two sets of square brackets to indicate that it points
to a two dimensional array� In our declaration� we must include the number of columns in the
array because this speci�es the size of each row� Recall� the two dimensional array is an array of
rows� Once the compiler knows the size of a row in the array� it is able to correctly determine the
beginning of each row�
The next function called in main
� computes the weighted average for each row� The weighted

average for one record is just the sum of each of the exam score times the actual weight of that
exam� If the scores are in the array� ex����� then the following code will compute a weighted
average for a single row� row�

wtdavg � ����

for
col � �� col �� nexs� col���

wtdavg �� ex�row��col� � wts�col� � ������

We convert the percent weight to the actual weight multiply by the score� and accumulate it in
the sum� wtdavg yielding a �oat value� The wtdavg will be stored in the integer array� ex�����
after rounding to a nearest integer� If we simply cast wtdavg to an integer� it will be truncated�
To round to the nearest integer� we add ��� to wtdavg and then cast it to integer�

ex�row��nexs � �� �
int�
��� � wtdavg��

The weighted average is stored into the column of the array after the last exam score� The entire
function is shown in Figure ���
Computing average of each of the exams and the weighted average is simple� We just sum

each of the columns and divide by the number of items in the column� and is also shown in Figure
���� For each exam and for the weighted average column� the scores are added and divided by
lim� the number of rows in the array� using �oating point computation� The result is rounded to
the nearest integer and stored in the array� avg��� Figure ��� shows the �nal two functions for
printing the results�
Running the program with data �le�wtdin�dat as follows�

 "� "#

�	 �	 $�

�
 �� �#

�� �$ �	

�� �$ ��

�" ��� ��

#� ��� #�

#	 �� "#

#
 $# #�

"� ��� ��

"� "
 "

"� �� "�

produces the following sample session�

���Weighted Average of Scores���

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� wtdavg�c � continued ��

�� Computes the weighted average of the exam scores in ex���� for

lim individuals� nexs number of exams� and weights given by wts���

��

void wtd�avg
int ex���COLS�� int lim� int nexs� float wts���

� int i� j�

float wtdavg�

for
i � �� i � lim� i��� �

wtdavg � ����

for
j � �� j �� nexs� j���

wtdavg �� ex�i��j� � wts�j� � ������

ex�i��nexs � �� �
int�
wtdavg � �����

�

�

�� Averages exam and weighted average scores� ��

void avg�scores
int ex���COLS�� int avg��� int lim� int nexs�

� int i� j�

for
j � �� j �� nexs � �� j��� �

avg�j� � ��

for
i � �� i � lim� i���

avg�j� �� ex�i��j��

avg�j� �
int�
��� �
float� avg�j� �
float� lim��

�

�

Figure ���� Code for wtd avg
� and avg scores
�

���� TWO DIMENSIONAL ARRAYS ���

�� File� wtdavg�c � continued ��

�� Prints the scores for exams and the weighted average� ��

void print�scores
int ex���COLS�� int lim� int nexs�

� int i� j�

printf
�ID ��t���

for
j � �� j �� nexs� j���

printf
�Ex�d�t�� j�� �� print the headings ��

printf
�WtdAvg�n���

for
i � �� i � lim� i��� � �� print the scores and wtd avg ��

for
j � �� j �� nexs � �� j���

printf
��d�t�� ex�i��j���

printf
��n���

�

�

�� Prints the averages of exams and the average of the weighted average

of exams�

��

void print�avgs
int avg��� int nexs�

� int i�

for
i � �� i �� nexs� i���

printf
�Average for Exam �d � �d�n�� i� avg�i���

printf
�Average of the weighted average � �d�n�� avg�nexs � ����

�

Figure ���� Code for print scores
� and print avgs
�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

Number of exams� �

Percent Weight for Exam �� ��

Percent Weight for Exam 	� ��

Input File� RETURN to quit� wtdin�dat

ID � Ex� Ex	 WtdAvg

 "� "# "

�	 �	 $� $#

�
 �� �# "#

�� �$ �	 ��

�� �$ �� �"

�" ��� �� �$

#� ��� #� $

#	 �� "# $#

#
 $# #� "#

"� ��� �� ��

"� "
 "
 "

"� �� "� $"
Average for Exam � � $$

Average for Exam 	 � "�

Average of the weighted average � $	

In this program� we have assumed that the input �le contains only the data to be read� i�e� the
student id numbers and exam scores� Our read scores
� function is written with this assumption�
However� the input �le might also contain some heading information such as the course name and
column headings in the �rst few lines of the �le� We can easily modify read scores
� to discard
the �rst few lines of headings�

As a second example of application of two dimensional arrays� consider our previous payroll
example� In this case� the data items in a pay data record are not all of the same data type� The
id numbers are integers� whereas all the other items are �oat� Therefore� we must use an array of
integers to store the id numbers� and a two dimensional �oat array to store the rest of the data
record� The algorithm is no di�erent from the program we developed in Chapter � that computed
pay� The di�erence is that now we use a two dimensional array for all �oat payroll data instead
of several one dimensional arrays� The id numbers are still stored in a separate one dimensional
array� Since the data structures are now di�erent� we must recode the functions to perform the
tasks of getting data� calculating pay� and printing results� but still using the same algorithms�

The program driver and the header �les are shown in Figure ���� The program declares an
integer array for id numbers and a two dimensional �oat array for the rest of the data record� The
successive columns in the two dimensional array store the hours worked� rate of pay� regular pay�
overtime pay� and total pay� respectively� We have de�ned macros for symbolic names for these
index values� As in the previous version� the program gets data� calculates pay� and prints data�
The di�erence is in the data structures used� Functions to perform the actual tasks are shown
in Figure ��� and ��� and included in the same program source �le� Each function uses a two
dimensional array� payrec����� The row index speci�es the data record for a single id� and the
column index speci�es a data item in the record� The data record also contains the total pay� A
sample interaction with the program� pay	rec�c� is shown below�

���� TWO DIMENSIONAL ARRAYS ���

�� File� pay	rec�c

Program calculates and stores payroll data for a number of id!s�

The program uses a one dimensional array for id!s� and a two

dimensional array for the rest of the pay record� The first column

is hours� the second is rate� the third is regular pay� the fourth

is overtime pay� and the fifth is total pay�

��

�include �stdio�h�

�define MAX ��

�define REG�LIMIT ��

�define OT�FACTOR ���

�define HRS �

�define RATE �

�define REG 	

�define OVER

�define TOT �

int get	data
int id��� float payrec���TOT � ��� int lim��

void calc	pay
float payrec���TOT � ��� int n��

void print	data
int id��� float payrec���TOT � ��� int n��

main
�

� int n � �� id�MAX��

float payrec�MAX��TOT � ���

printf
����Payroll Program � Records in 	 D arrays����n�n���

n � get	data
id� payrec� MAX��

calc	pay
payrec� n��

print	data
id� payrec� n��

�

Figure ���� Driver for Payroll Program Using �D Arrays

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� pay	rec�c � continued ��

�� Gets id!s in one array� and the rest of input data records

in a two dimensional array�

��

int get	data
int id��� float payrec���TOT � ��� int lim�

� int n � ��

float x�

while
n � lim� �

printf
�ID �zero to quit�� ���

scanf
��d�� �id�n���

if
id�n� �� ��

return n�

printf
�Hours Worked� ���

scanf
��f�� �x��

payrec�n��HRS� � x�

printf
�Rate of Pay� ���

scanf
��f�� �x��

payrec�n��RATE� � x�

n���

�

if
n �� lim� �

printf
�Table full� processing data�n���

return n�

�

�

Figure ���� Code for Payroll Program Functions � get	data
�

���� TWO DIMENSIONAL ARRAYS ���

�� Calculates pay for each id record in a two dimensional array� ��

void calc	pay
float payrec���TOT � ��� int n�

� int i�

for
i � �� i � n� i��� �

if
payrec�i��HRS� �� REG�LIMIT� �

payrec�i��REG� � payrec�i��HRS� � payrec�i��RATE��

payrec�i��OVER� � ��

�

else �

payrec�i��REG� � REG�LIMIT � payrec�i��RATE��

payrec�i��OVER� �
payrec�i��HRS� � REG�LIMIT� �

OT�FACTOR � payrec�i��RATE��

�

payrec�i��TOT� � payrec�i��REG� � payrec�i��OVER��

�

�

�� Prints a table of payroll data for all id!s� Id!s in one array�

and the rest of the records in a two dim� array�

��

void print	data
int id��� float payrec���TOT � ��� int n�

� int i� j�

printf
����PAYROLL� FINAL REPORT����n�n���

printf
����s���s���s���s���s���s�n�� �ID�� �HRS��

�RATE�� �REG�� �OVER�� �TOT���

for
i � �� i � n� i��� �

printf
����d�� id�i���

for
j � �� j �� TOT� j���

printf
�����	f�� payrec�i��j���

printf
��n���

�

�

Figure ���� Code for Payroll Program Functions � calc	pay
� and print	data
�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

Sample Session�

���Payroll Program � Records in 	 D arrays���

ID �zero to quit�� �

Hours Worked� ��

Rate of Pay� ��

ID �zero to quit�� ��

Hours Worked� ��

Rate of Pay� ��

ID �zero to quit�� �

���PAYROLL� FINAL REPORT���
ID HRS RATE REG OVER TOT

�
���� �����
����� ����
�����

�� ����� �	��� �$���� �$���� ##����

��� Implementing Multi�Dimensional Arrays

In the last section we saw how we can use two dimensional arrays � how to declare them� pass
them to functions� and access the date elements they contain using array indexing notation� As
with one dimensional arrays� we can access elements in a �D array using pointers as well� In
order to understand how this is done� in this section we look at how multi dimensional arrays are
implemented in C�
As we saw in Chapter �� a one dimensional array is stored in a set of contiguous memory cells

and the name of the array is associated with a pointer cell to this block of memory� In C� a two
dimensional array is considered to be a one dimensional array of rows� which are� themselves�
one dimensional arrays� Therefore� a two dimensional array of integers� AA����� is stored as a
contiguous sequence of elements� each of which is a one dimensional array� The rows are stored
in sequence� starting with row � and continuing until the last row is stored� i�e� AA��� is stored
�rst� then AA���� then AA�	�� and so on to AA�MAX���� Each of these �elements	 is an array� so
is stored as a contiguous block of integer cells as seen in Figure ����� This storage organization
for two dimensional arrays is called row major order� The same is true for higher dimensional
arrays� An n dimensional array is considered to be a one dimensional array whose elements are�
themselves� arrays of dimension n� �� As such� in C� an array of any dimension is stored in row
major order in memory�
With this storage organization in mind� let us look at what implications this has to referencing

the array with pointers� Recall that an array name �without an index� represents a pointer to the
�rst object of the array� So the name� AA� is a pointer to the element AA���� iBut� AA��� is a one
dimensional array
 so� AA��� points to the �rst object in row �� i�e� AA��� points to AA�������
Similarly� for any k AA�k� points to the beginning of the kth row� i�e� AA�k� is the address of
AA�k����� Since AA�k� points to AA�k����� �AA�k� accesses AA�k����� an object of type integer�
If we add � to the pointer AA�k�� the resulting pointer will point to the next integer type element�
i�e� the value of AA�k����� In general� AA�k� � j points to AA�k��j�� and �
AA�k� � j� accesses
the value of AA�k��j�� This is shown in Tables ��� and ���� Each AA�k� points to an integer type
object� When an integer is added to the pointer AA�k�� the resulting pointer points to the next
object of the integer type�

���� IMPLEMENTING MULTI	DIMENSIONAL ARRAYS ���

� � �

� � �

���

AA���

AA���

AA�MAX���

Figure ����� A Two Dimensional Array in Row Major Order

AA��� �AA������
AA��� �AA������
AA��� �AA������
AA�k� �AA�k����

AA��� � �AA������
AA��� j �AA����j�

AA�k� j �AA�k��j�

Table ���� Array Pointers and Sub
Arrays

! AA��� AA������
AA�k� AA�k����

�AA��� �� AA������
�AA��� j� AA����j�

�AA�k� j� AA�k��j�

Table ���� Dereferencing Array Pointers

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

! AA AA��� �AA������
AA � AA��� � �AA������
AA j AA��� j �AA����j�

�AA �� AA��� �AA������
�AA k� AA�k� �AA�k����

�! AA� !AA��� AA������
�! �AA ��� !AA��� AA������
�! �AA k� j� !�AA�k� j� AA�k��j�

Table ���� Pointer Equivalence for Two Dimensional Arrays

The name� AA� is the name of the entire array� whose elements are themselves arrays of integers�
Therefore� AA points to the �rst object in this array of arrays� i�e� AA points to the array AA���� The
addresses represented by AA and AA��� are the same
 however� they point to objects of di�erent
types� AA��� points to AA������� so it is an integer pointer� AA points to AA���� so it is a pointer
to an integer pointer� If we add � to AA� the resulting pointer� AA � �� points to the array AA����
and AA � k points to the array AA�k�� When we add to a pointer to some type� we point to the
next object of that type� Therefore� adding to AA and AA��� result in pointers to di�erent objects�
Adding � to AA results in a pointer that points to the next array or row� i�e� AA���
 whereas adding
� to AA��� results in a pointer that points to AA������� Dereferencing such a pointer� �
AA � k��
accesses AA�k�� which as we saw� was �AA�k����� It follows that �
�
AA � k� � j� accesses the
integer� AA�k��j�� This pointer equivalence for two dimensional arrays is shown in Table ����
The C compiler converts array indexing to indirect access by dereferenced pointers as shown

in the table
 thus� all array access is indirect access When we pass a �D array to a function� we
pass its name �AA�� The function can access elements of the array argument either by indexing
or by pointers� We generally think of a two dimensional array as a table consisting of rows and
columns as seen in Figure ����� As such� it is usually easiest to access the elements by indexing

however� the pointer references are equally valid as seen in the �gure�
The relationships between di�erent pointers for a two dimensional array is further illustrated

with the program shown in Figure ����� The two
dimensional array� a� is not an integer pointer�
it points to the array of integers� a���� However� �a is an integer pointer
 it points to an integer
object� a������� To emphasize this point� we initialize an integer pointer� intptr to �a� i�e� a����
The initial value of intptr is the address of a������� We next print the values of a and �a� which
are the same address even though they point to di�erent types of objects� In the for loop� we
print the value of a � i� which is the same as that of a�i� even though they point to di�erent
types of objects� In the inner for loop� we print the address of the ith row and the jth column
element of the row major array using pointers�

�a � COL � i � j

The same value is printed using the address of operator� �a�i��j�� Finally� the value of a�i��j�
is printed using array indices as well as by dereferencing pointers� i�e� �
�
a � i� � j��
The value of intptr� initialized to �a� is incremented after each element value is printed

���� IMPLEMENTING MULTI	DIMENSIONAL ARRAYS ���

� �

�

�

�

��

�

�

��

AA���

AA���

AA���

AA�MAX���

AA

AA 	 �

AA 	 �

AA 	 MAX � �

AA���	�AA���	� AA���	MAXCOL��

� � �

� � �

� � �

���

� � �

Figure ����� Pointers and Two Dimensional Arrays

making it point to the next element� The value of intptr is printed as it is incremented� Observe
that it prints the address of each element of the array in one row� and proceeds to the next row
in sequence� This shows that arrays are stored in row major form�
Finally� the function� print	aray
� is used to print the two dimensional array in rows and

columns� The output of a sample run is shown below�

���	D Arrays� Pointers ���

array
row� pointer a � #��"�� �a � #��"�

a � � � #��"�

�a � COL � � � � � #��"�� intptr � #��"�

�a������ � #��"�

a������ � �	� �
�
a � �� � �� � �	

�a � COL � � � � � #��"#� intptr � #��"#

�a������ � #��"#

a������ � 	�� �
�
a � �� � �� � 	�

�a � COL � � � 	 � #��"$� intptr � #��"$

�a����	� � #��"$

a����	� � 	�� �
�
a � �� � 	� � 	�

a � � � #��$�

�a � COL � � � � � #��$�� intptr � #��$�

�a������ � #��$�

a������ � 	
� �
�
a � �� � �� � 	

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� ar	ptr�c

Other Source Files� ar	util�c

Header Files� ar	def�h� ar	util�h

Program shows relations between arrays and pointers for 	 dimensional

arrays�

��

�include �stdio�h�

�define ROW 	

�define COL

print	aray
int x���COL�� int r� int c��

main
�

� int i� j� �intptr� a�ROW��COL� �

� ��	� 	�� 	��� �	
� �"� ��� ��

printf
����	D Arrays� Pointers ����n�n���

intptr � �a�

printf
�array
row� pointer a � �u� �a � �u�n�� a� �a��

for
i � �� i � ROW� i��� �

printf
�a � �d � �u�n�� i� a � i��

for
j � �� j � COL� j��� �

printf
��a � COL � �d � �d � �u� intptr � �u�n��

i� j� �a � COL � i � j� intptr��

printf
��a��d���d� � �u�n�� i� j� �a�i��j���

printf
�a��d���d� � �d� �
�
a � �d� � �d� � �d�n��

i� j� a�i��j��

i� j� �
�
a � i� � j���

intptr���

�

�

print	aray
a� ROW� COL��

�

�� This Function prints a two dimensional integer array� ��

print	aray
int x���COL�� int r� int c�

� int i� j�

printf
��nThe two dimensional array is��n�n���

for
i � �� i � r� i��� �

for
j � �� j � c� j���

printf
��d �� x�i��j���

printf
��n���

�

�

Figure ����� Program Illustrating �D Array Pointers

���� ARRAYS OF STRINGS ���

�a � COL � � � � � #��$	� intptr � #��$	

�a������ � #��$	

a������ � �"� �
�
a � �� � �� � �"

�a � COL � � � 	 � #��$�� intptr � #��$�

�a����	� � #��$�

a����	� � ��� �
�
a � �� � 	� � ��

The two dimensional array is�
�	 	� 	�

	
 �" ��

As we mentioned in the last section� when a two dimensional array is passed to a function�
the parameter declaration in the function must include the number of columns� We can now see
why this is so� The number of columns in a row speci�es the size of each row in the array of rows�
Since the passed parameter is a pointer to a row object� it can be incremented and dereferenced�
as shown in Table ���� to access the elements of the two dimensional array� The compiler must
know the size of the row in order to be able to increment the pointer to the next row�
As we stated earlier� multi
dimensional arrays are arrays of arrays just like two dimensional

arrays� An n dimensional array is an array of n�� dimensional arrays� The same general approach
applies as for two dimensional arrays� When passing an n dimensional array� the declaration of
the formal parameter must specify all index ranges except for the �rst index�
As was seen in the program in Figure ����� multi
dimensional arrays may also be initialized in

declarations by specifying constant initializers within braces� Each initializer must be appropriate
for the corresponding lower dimensional array� For example� a two dimensional array may be
initialized as follows�

int x�	��
� � � ���� 	
�� ��� �	� �"� ��

The array has two elements� each of which is an array of three elements� The �rst initializer
initializes the �rst row of x� Since only the �rst two elements of the row are speci�ed� the third
element is zero� The second element initializes the second row� Thus� x is initialized to the array�

�� 	
 �

� �	 �"

��� Arrays of Strings

Besides data base applications� another common application of two dimensional arrays is to store
an array of strings� In this section we see how an array of strings can be declared and operations
such as reading� printing and sorting can be performed on them�
A string is an array of characters
 so� an array of strings is an array of arrays of characters�

Of course� the maximum size is the same for all the strings stored in a two dimensional array� We
can declare a two dimensional character array of MAX strings of size SIZE as follows�

char names�MAX��SIZE��

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�

�

�

�

� � �

� � �

� � �

���

� � �J o h n n�

S u e n�
names���

names���

names���

names�MAX���

Figure ����� An Array of Strings

Since names is an array of character arrays� names�i� is the ith character array� i�e� it points
to the ith character array or string� and may be used as a string of maximum size SIZE � �� As
usual with strings� a NULL character must terminate each character string in the array� We can
think of an array of strings as a table of strings� where each row of the table is a string as seen in
Figure �����
We will need an array of strings in our next task to read strings� store them in an array� and

print them�
NAMES� Read and store a set of strings� Print the strings�
We can store a string into names�i� by reading a string using gets
� or by copying one into

it using strcpy
�� Since our task is to read strings� we will use gets
�� The algorithm is simple�

while array not exhausted and not end of file�

read a string into an array element

print out the strings in the array of strings

We will organize the program in several source �les since we will be using some of the functions
in several example programs� The program driver and the header �le are shown in Figure �����
The program reads character strings into an array� in this case� names� The program can� of

course� serve to read in any strings� The for loop in main
� reads strings into an array using
gets
� to read a string into names�n�� the nth row of the array� That is� the string is stored
where names�n� points to� The variable n keeps track of the number of names read� The loop is
terminated either if the number of names equals MAX� or when gets
� returns NULL indicating end
of �le has been reached� Next� the program calls on printstrtab
� to print the names stored in
the two dimensional array� names� The arguments passed are the array of strings and the number
of strings� n�
The function� printstrtab
� is included in the �le strtab�c and its prototype is included

in the �le strtab�h� Remember� the second range of the two dimensional array of strings must
be speci�ed in the formal parameter de�nition� otherwise the number of columns in a row are
unknown and the function cannot access successive rows correctly� A sample interaction for the
compiled and linked program is shown below�
Sample Session�

���Table of Strings � Names���

���� ARRAYS OF STRINGS ���

�� File� strtab�h ��

�define SIZE
� �� maximum size of a name plus a NULL ��

void printstrtab
char strtab���SIZE�� int n��

�� File� names�c

Other Source Files� strtab�c

Header Files� strtab�h

This program reads a set of names or strings into a two

dimensional array� It then prints out the names�

��

�include �stdio�h�

�define MAX ��

�include �strtab�h�

main
�

� int n� �� number of names ��

char names�MAX��SIZE�� �� 	�d array of names ��

printf
����Table of Strings � Names����n�n���

printf
�Enter one name per line� EOF to terminate�n���

for
n � ��
n � MAX� �� gets
names�n��� n���

�

if
n �� MAX�

printf
��n��Table full � input terminated�n���

printstrtab
names� n��

�

�� File� strtab�c ��

�include �stdio�h�

�include �strtab�h�

�� Prints n strings in the array strtab����� ��

void printstrtab
char strtab���SIZE�� int n�

� int k�

printf
�Names are��n���

for
k � �� k � n� k���

puts
strtab�k���

�

Figure ����� Code for String Table Driver

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

Enter one name per line� EOF to terminate

John Smith

David Jones

Helen Peterson

Maria Schell

D

Names are�

John Smith

David Jones

Helen Peterson

Maria Schell

����� String Sorting and Searching

Our next couple of tasks are simple and build on the last one� In one task we search �sequentially�
for a string and in another we sort a set of strings�

SRCHSTR� Search for a key string in a set of strings�
We will use a function� srchstr
�� to search for a string in an array of a speci�ed size� The

function returns either a valid index where the string is found or it returns
� to indicate failure�
The algorithm is simple enough and the implementation of a test program driver is shown in
Figure �����

The �le strtab�h includes the prototypes for functions in �le strtab�c� Observe the ini

tialization of the two dimensional array names���� using constant initializers written in braces
separated by commas� Each initializer initializes a one dimensional string array written as a string
constant� The program calls srchstrtab
� searching for the string �John Smith�� and prints the
returned index value�
As we have seen in Chapter �� the library function strcmp
� is used to compare two strings�

The function returns zero if the argument strings are equal� A sequential search process for strings
is easily developed by modifying the sequential search function of Chapter �� replacing the equality
operator with the function strcmp
� to compare two strings�

In the function� srchstrtab
�� we compare each string in the array with the desired string
until we either �nd a match or the array is exhausted� The function call requires the name of the
array of strings� the number of valid elements in the array� and the item to be searched for� For
example� suppose we wish to search for a string� key� in the array� names with n string elements�
then� the function call would be�

k � srchstrtab
names� n� key��

The value returned is assigned to an integer variable� k� If successful� srchstrtab
� returns the
index where the string was found
 otherwise� it returns
�� The function is shown in Figure ����� In
the for loop� the string that strtab�i� points to is compared with the string that key points to� If
they are equal� strcmp
� returns zero and the value of i is returned by the function� Otherwise� i
is incremented� and the process is repeated� The loop continues until the valid array is exhausted�
in which case
� is returned� Again� the formal parameter de�nition for the two dimensional array�
x� requires the size of the second dimension� SIZE� A sample run of the program is shown below�

���� ARRAYS OF STRINGS ���

�� File� strsrch�c

Other Source Files� strtab�c

Header Files� strtab�h

This program searches for a string
key� in a set of strings

in a two dimensional array� It prints the index where key is found�

It prints ��� if the string is not found�

��

�include �stdio�h�

�define MAX ��

�include �strtab�h�

main
�

� int k�

char names�MAX��SIZE� � � �John Jones�� �Sheila Smith��

�John Smith�� �Helen Kent���

printf
����String Search for John Smith����n�n���

k � srchstrtab
names� �� �John Smith���

printf
�John Smith found at index �d�n�� k��

�

Figure ����� Driver for String Search Program

�� File� strtab�c � continued ��

�include �string�h�

�� Searches a string table strtab���� of size n for a string key� ��

int srchstrtab
char strtab���SIZE�� int n� char key���

� int i�

for
i � �� i � n� i���

if
strcmp
strtab�i�� key� �� ��

return i�

return ���

�

Figure ����� Code for srchstrtab
�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� strsort�c

Other Source Files� strtab�c

Header Files� strtab�h

This program sorts a set of strings in a two dimensional array�

It prints the unsorted and the sorted set of strings�

��

�include �stdio�h�

�define MAX ��

�include �strtab�h�

main
�

� int n�

char names�MAX��SIZE� � � �John Jones�� �Sheila Smith��

�John Smith�� �Helen Kent���

printf
����String Array � unsorted and sorted����n�n���

printf
�Unsorted ���

printstrtab
names� ���

sortstrtab
names� ���

printf
�Sorted ���

printstrtab
names� ���

�

Figure ����� Driver for Sorting Strings Program

���String Search for John Smith���

John Smith found at index 	

Our next task calls for sorting a set of strings�

SORTSTR� Sort a set of strings� Print strings in unsorted and in sorted order�

The algorithm is again very simple and we implement it in the program driver� The driver
simply calls on sortstrtab
� to sort the strings and prints the strings� �rst unsorted and then
sorted� A prototype for sortstrtab
� is included in �le strtab�h and the driver is shown in
Figure ����� An array of strings is initialized in the declaration and the unsorted array is printed�
Then� the array is sorted� and the sorted array is printed�

Sorting of an array of strings is equally straight forward� Let us assume� the array of strings is
to be sorted in increasing ASCII order� i�e� a is less than b� b is less than c� A is less than a� and so
on� We will use the selection sort algorithm from Chapter ��� Two nested loops are needed
 the
inner loop moves the largest string in an array of some e�ective size to the highest index in the
array� and the outer loop repeats the process with a decremented e�ective size until the e�ective
size is one� The function is included in �le strtab�c and shown in Figure ����� The function

���� ARRAYS OF STRINGS ���

�� File� strtab�c � continued ��

�� Sorts an array of strings� The number of strings in the

array is lim�

��

void sortstrtab
char strtab���SIZE�� int lim�

� int i� eff�size� maxpos � ��

char tmp�SIZE��

for
eff�size � lim� eff�size � �� eff�size��� �

for
i � �� i � eff�size� i���

if
strcmp
strtab�i�� strtab�maxpos�� � ��

maxpos � i�

strcpy
tmp� strtab�maxpos���

strcpy
strtab�maxpos�� strtab�eff�size�����

strcpy
strtab�eff�size � ��� tmp��

�

�

Figure ����� Code for sortstrtab
�

is similar to the numeric selection sort function� except that we now use strcmp
� to compare
strings and strcpy
� to swap strings� A sample session is shown below�

���String Array � unsorted and sorted���

Unsorted Names are�

John Jones

Sheila Smith

John Smith

Helen Kent

Sorted Names are�

Helen Kent

John Jones

John Smith

Sheila Smith

In our example program� the entire strings are compared� If we wish to sort by last name� we
could modify our function to �nd and compare only the last names�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

��� Arrays of Pointers

As seen in the last example� sorting an array of strings requires swapping the strings which can
require copying a lot of data� For e�ciency� it is better to avoid actual swapping of data whenever
a data item is large� such as a string or an entire data base record� In addition� arrays may be
needed in more than one order
 for example� we may need an exam scores array sorted by Id
number and by weighted scores
 or� we may need strings in both an unsorted form and a sorted
form� In either of these cases� we must either keep two copies of the data� each sorted di�erently�
or �nd a more e�cient way to store the data structure� The solution is to use pointers to elements
of the array and swap pointers� Consider some examples�

int data�� data	� �ptr�� �ptr	� �save�

data� � ���� data	 � 	���

ptr� � �data�� ptr	 � �data	�

We could swap the values of the data and store the swapped values in data� and data	 or we
could simply swap the values of the pointers�

save � ptr��

ptr� � ptr	�

ptr	 � save�

We have not changed the values in data� and data	
 but ptr� now accesses data	 and ptr	

access data�� We have swapped the pointer values so they point to objects in a di�erent order�
We can apply the same idea to strings�

char name��� � �John��

char name	�� � �Dave��

char �p�� �p	� �save�

p� � name��

p	 � name	�

Pointers p� and p	 point to strings name� and name	� We can now swap the pointer values so p�
and p	 point to name	 and name�� respectively�
In general� an array of pointers can be used to point to an array of data items with each

element of the pointer array pointing to an element of the data array� Data items can be accessed
either directly in the data array� or indirectly by dereferencing the elements of the pointer array�
The advantage of a pointer array is that the pointers can be reordered in any manner without
moving the data items� For example� the pointer array can be reordered so that the successive
elements of the pointer array point to data items in sorted order without moving the data items�
Reordering pointers is relatively fast compared to reordering large data items such as data records
or strings� This approach saves a lot of time� with the additional advantage that the data items
remain available in the original order� Let us see how we might implement such a scheme�
STRPTRS� Given an array of strings� use pointers to order the strings in sorted form� leaving

the array unchanged�
We will use an array of character pointers to point to the strings declared as follows�

���� ARRAYS OF POINTERS ���

�

�

�

�

�

� � �

� � �

� � �

� � �

���

u e n�

y u r i n�

o h n n�

c a r o

d a v i

s

j

� � �

� � �

�

�

�

�

�

�

�

�

�

�

MAX��

l

d

n�

n�

captionUnsorted Pointers to Strings

char � nameptr�MAX��

The array� nameptr��� is an array of size MAX� and each element of the array is a character pointer�
It is then possible to assign character pointer values to the elements of the array
 for example�

nameptr�i� � �John Smith��

The string �John Smith� is placed somewhere in memory by the compiler and the pointer to the
string constant is then assigned to nameptr�i�� It is also possible to assign the value of any string
pointer to nameptr�i�
 for example� if s is a string� then it is possible to assign the pointer value
s to nameptr�i��

nameptr�i� � s�

In particular� we can read strings into a two dimensional array� names����� and assign each string
pointer� names�i� to the ith element of the pointer array� nameptr���

for
i � �� i � MAX �� gets
names�i��� i���

nameptr�i� � names�i��

The strings can then be accessed either by names�i� or by nameptr�i� as seen in Figure ���� We
can then reorder the pointers in nameptr�� so that they successively point to the strings in sorted
order as seen in Figure ���� We can then print the strings in the original order by accessing them
through names�i� and print the strings in sorted order by accessing them through nameptr�i��
Here is the algorithm�

while not end of file and array not exhausted�

read a string

store it in an array of strings and

assign the string to an element of a pointer array

access the array of strings and print them out

access the array of pointers and print strings that point to

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�

�

�

�

�

�

�

�

�

�

MAX��

�

�

�

�

� � � �

� � �

� � �

� � �

���

u e n�

y u r i n�

o h n n�

c a r o

d a v i

s

j

� � �

� � �

l

d

n�

n�

captionSorted Pointers to Strings

The program driver� including a prototype for sortptrs
� is shown in Figure ����� It declares
a two dimensional array of strings� names����� and an array of character pointers� nameptr���
It then reads strings into names����� and assigns each string pointer names�i� to nameptr�i��
The function sortptrs
� is then called to reorder nameptr�� so the successive pointers of the
array point to the strings in sorted order� Finally� strings are printed in original unsorted order
by accessing them through names�i� and in sorted order by accessing them through nameptr�i��
The function sortptrs
� uses the selection sort algorithm modi�ed to access data items

through pointers� It repeatedly moves the pointer to the largest string to the highest index of an
e�ective array� The implementation of sorting using pointers to strings is shown in Figure �����
The algorithm determines maxpos� the index of the pointer to the largest string� The pointer at
maxpos is then moved to the highest index in the e�ective array� The array size is then reduced�
etc�
Sample Session�

���Arrays of Pointers � Sorting by Pointers���

Enter one name per line� EOF to terminate

john

yuri

sue

carol

david

D

The unsorted names are�

john

yuri

sue

carol

david

���� ARRAYS OF POINTERS ���

�� File� ptraray�c

This program uses an array of pointers� Elements of the array

point to strings� The pointers are reordered so that they

point to the strings in sorted order� Unsorted and sorted

strings are printed out�

��

�include �stdio�h�

�define TRUE �

�define FALSE �

�define MAX �� �� max number of names ��

�define SIZE
� �� size of names plus one for NULL ��

void sortptrs
char � nameptr��� int n��

main
�

� int i� �� counter ��

int n� �� number of names read ��

char names�MAX��SIZE�� �� 	�d array of names ��

char �nameptr�MAX�� �� array of ptrs � used to point to names ��

printf
����Arrays of Pointers � Sorting by Pointers����n�n���

�� read the names into the 	�d array ��

printf
�Enter one name per line� ���

printf
�EOF to terminate�n���

for
n � �� gets
names�n�� �� n � MAX� n���

nameptr�n� � names�n�� �� assign string pointer ��

�� to a char pointer in the ��

�� array of pointers� ��

if
n �� MAX�

printf
��n���Only �d names allowed����n�� MAX��

printf
�The unsorted names are��n���

�� print the names ��

for
i � �� i � n� i���

puts
names�i��� �� access names in stored array���

sortptrs
nameptr� n�� �� sort pointers ��

printf
�The sorted names are��n���

for
i � �� i � n� i��� �� print sorted names� ��

puts
nameptr�i��� �� accessed via array of pointers� ��

�

Figure ����� Driver for Sorting Pointer Array Program

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� ptraray�c � continued ��

�� The elements of the array of pointers nameptr�� point to

strings� The pointer array is reordered so the pointers

point to strings in sorted order� The function uses selection

sort algorithm�

��

void sortptrs
char � nameptr��� int n�

� int i� eff�size� maxpos � ��

char �tmpptr�

for
eff�size � n� eff�size � �� eff�size��� �

for
i � �� i � eff�size� i���

if
strcmp
nameptr�i��nameptr�maxpos�� � ��

maxpos � i�

tmpptr � nameptr�maxpos��

nameptr�maxpos� � nameptr�eff�size����

nameptr�eff�size��� � tmpptr�

�

�

Figure ����� Code for sortptrs
�

���� AN EXAMPLE� LINEAR ALGEBRAIC EQUATIONS ���

The sorted names are�

carol

david

john

sue

yuri

Reordering of pointers� so they point to data items in sorted order� is referred to as sorting by

pointers� When the data items are large� such as data records or strings� this is the preferred way
of sorting because it is far more e�cient to move pointers than it is to move entire data records�

��� An Example	 Linear Algebraic Equations

As our �nal example program using two dimensional arrays in this chapter� we develop a program
to solve systems of simultaneous linear equations� A set of linear algebraic equations� also called
simultaneous equations� occur in a variety of mathematical applications in science� engineering�
economics� and social sciences� Examples include� electronic circuit analysis� econometric analysis�
structural analysis� etc� In the most general case� the number of equations� n� may be di�erent
from the number of unknowns� m
 thus� it may not be possible to �nd a unique solution� However�
if n equals m� there is a good chance of �nding a unique solution for the unknowns�
Our next task is to solve a set of linear algebraic equations� assuming that the number of

equations equals the number of unknowns�
LINEQNS� Read the coe�cients and the right hand side values for a set of linear equations

solve the equations for the unknowns�
The solution of a set of linear equations is fairly complex� We will �rst review the process of

solution and then develop the algorithm in small parts� As we develop parts of the algorithm�
we will implement these parts as functions� The driver will just read the coe�cients� call on a
function to solve the equations� and call a function to print the solution�
Let us start with an example of a set of three simultaneous equations in three unknowns� x��

x�� and x��

� � x� � � x� � � x� " �

� � x� � � x� � � x� " �

� � x� � � x� � � x� " �

We can use arrays to represent such a set of equations
 a two dimensional array to store the
coe�cients� a one dimensional array to store the values of the unknowns when solved� and another
one dimensional array to store the values on the right hand side� Later� we will include the right
hand side values as an additional column in the two dimensional array of coe�cients� Each row
of the two dimensional array stores the coe�cients of one of the equations� Since the array index
in C starts at �� we will assume the unknowns are the elements x���� x���� and x�	�� Similarly�
the elements in row zero are the coe�cients in the equation number �� the elements in row one
are for equation number one� and so forth�
Then using arrays� a general set of n linear algebraic equations with m unknowns may be

expressed as shown below�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

a������ � x��� � a�������x��� � ���� a����m � �� � x�m � �� � y���

a������ � x��� � a�������x��� � ���� a����m � �� � x�m � �� � y���

���

a�n�������x��� � ��� � a�n����m � ���x�m � �� � y�n���

The unknowns and the right hand side are assumed to be elements of one dimensional arrays�
x���� x����� � �� x�m � �� and y���� y����� � �� y�n � ��� respectively� The coe�cients are
assumed to be elements of a two dimensional array� a�i��j� for i " �� � � � � n � � and j "
�� � � � �m��� The coe�cients of each equation correspond to a row of the array� For our discussion
in this section� we assume that m equals n� With this assumption� it is possible to �nd a unique
solution of these equations unless the equations are linearly dependent� i�e� some equations are
linear combinations of others�
A common method for solving such equations is called the Gaussian elimination method�

The method eliminates �i�e� makes zero� all coe�cients below the main diagonal of the two
dimensional array� It does so by adding multiples of some equations to others in a systematic way�
The elimination makes the array of new coe�cients have an upper triangular form since the lower
triangular coe�cients are all zero�
The modi�ed equivalent set of n equations in m " n unknowns in the upper triangular form

have the appearance shown below�

a�������x���� a�������x��� � ��� � a����n��� �x�n��� � y���

a�������x��� � ��� � a����n��� �x�n��� � y���

a�	��	��x�	���� a�	��n��� �x�n��� � y�	�

a�n����n����x�n���� y�n���

The upper triangular equations can be solved by back substitution� Back substitution �rst solves
the last equation which has only one unknown� x�n���� It is easily solved for this value � x�n���

� y�n����a�n����n���� The next to the last equation may then be solved � since x�n��� has
been determined already� this value is substituted in the equation� and this equation has again only
one unknown� x�n�	�� The unknown� x�n�	�� is solved for� and the process continues backward
to the next higher equation� At each stage� the values of the unknowns solved for in the previous
equations are substituted in the new equation leaving only one unknown� In this manner� each
equation has only one unknown which is easily solved for�
Let us take a simple example to see how the process works� For the equations�

� � x��� � 	 � x��� �
 � x�	� � #

	 � x��� �
 � x��� � � � x�	� � #

� � x��� � � � x��� � 	 � x�	� �

We �rst reduce to zero the coe�cients in the �rst column below the main diagonal �i�e� array index
zero�� If the �rst equation is multiplied by
� and added to the second equation� the coe�cient in
the second row and �rst column will be zero�

� � x��� � 	 � x��� �
 � x�	� � #

� � x��� � � � x��� � � � x�	� � �#

� � x��� � � � x��� � 	 � x�	� �

Similarly� if the �rst equation is multiplied by
� and added to the third equation� the coe�cient
in the third row and �rst column will be zero�

���� AN EXAMPLE� LINEAR ALGEBRAIC EQUATIONS ���

� � x��� � 	 � x��� �
 � x�	� � #

� � x��� � � � x��� � � � x�	� � �#

� � x��� � 	 � x��� � � � x�	� � �

Coe�cients in the �rst column below the main diagonal are now all zero� so we do the same for
the second column� In this case� the second equation is multiplied by a multiplier and added to
equations below the second
 thus� multiplying the second equation by
� and adding to the third
makes the coe�cient in the second column zero�

� � x��� � 	 � x��� �
 � x�	� � #

� � x��� � � � x��� � � � x�	� � �#

� � x��� � � � x��� � � � x�	� � �

We now have equivalent equations with an upper triangular form for the non
zero coe�cients�
The equations can be solved backwards � the last equation gives us x�	� " �� Substituting the
value of x�	� in the next to the last equation and solving for x��� gives us x��� " �� Finally�
substituting x�	� and x��� in the �rst equation gives us x��� " ��
From the above discussion� we can see that a general algorithm involves two steps� modify

the coe�cients of the equations to an upper triangular form� and solve the equations by back
substitution�
Let us �rst consider the process of modifying the equations to an upper triangular form� Since

only the coe�cients and the right hand side values are involved in the computations that modify
the equations to upper triangular form� we can work with these items stored in an array with n

rows and n � columns �the extra column contains the right hand side values��

Let us assume the process has already reduced to zero the �rst k � � columns below the main
diagonal� storing the modi�ed new values of the elements in the same elements of the array� Now�
it is time to reduce the kth lower column to zero �by lower column� we mean the part of the column
below the main diagonal�� The situation is shown in below�

a������ a������ ��� a����k� ��� a����n�

� a������ ��� a����k� ��� a����n�

� � a�	��	���� a�	��k� ��� a�	��n�

��� ��� ��� ��� ��� ���

� � ���� a�k��k� a�k��k����� a�k��n�

� � ���� a�k����k� ��� a�k����n�

� � ���� a�k�	��k� ��� a�k�	��n�

��� ��� ��� ��� ��� ���

� � ���� a�n����k� ��� a�n����n�

The nth column represents the right hand side values with a�i��n� equal to y�i�� We multiply the
kth row by an appropriate multiplier and add it to each row with index greater than k� Assuming
that a�k��k� is non
zero� the kth row multiplier for addition to the ith row �i � k� is�

�a�i��k� � a�k��k�

The kth row multiplied by the above multiplier and added to the ith row will make the new a�i��k�

zero� The following loop will reduce to zero the lower kth column�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� Algorithm� process�column

Reduces lower column k to zero�

��

for
i � k � �� i � n� i��� � �� process rows k�� to n�� ��

m � � a�i��k� � a�k��k� �� multiplier for ith row ��

for
j � k� j �� n� j��� �� � thru k�� cols� are zero ��

a�i��j� �� m � a�k��j�� �� add kth row times m ��

�� to ith row� ��

�

However� before we can use the above loop to reduce the lower kth column to zero� we must
make sure that a�k��k� is non
zero� If the current a�k��k� is zero� all we need to do is exchange
this kth row with any higher indexed row with a non
zero element in the kth column� After the
exchange of the two rows� the new a�k��k� will be non
zero� The above loop is then used to
reduce the lower kth column to zero� The non
zero element� a�k��k� used in the multiplier is
called a pivot�
So� there are two steps involved in modifying the equations to upper triangular form� for each

row �nd a pivot� and reduce the corresponding lower column to zero� If a non
zero pivot element is
not found� then one or more equations are linear combinations of others� the equations are called
linearly dependent� and they cannot be solved�
Figures ���� and ���� show the set of functions that convert the �rst n rows and columns of

an array to an upper triangular form� These and other functions use a user de�ned type� status�
with possible values ERROR returned if there is an error� and OK returned otherwise� The type
status is de�ned as follows�

typedef enum �ERROR� OK� status�

We also assume a maximum of MAX equations� so the two dimensional array must have MAX rows
and MAX�� columns� Figure ���� includes the header �le with the de�nes and function prototypes
used in the program� Since precision is important in these computations� we have used formal
parameters of type double� The two dimensional arrays can store coe�cients for a maximum of
MAX equations �rows� and have MAX � � columns to accommodate the right hand side values�
The function uptriangle
� transforms coe�cients of the equations to an upper triangular

form� For each k from � through n��� it calls findpivot
� to �nd the pivot in the kth column�
If no pivot is found� findpivot
� will return an ERROR �findpivot
� is called even for the
�n� ��st column even though there is no lower �n� ��st column to test if a�n����n��� is zero�� If
findpivot
� returns OK� then uptriangle
� calls process col
� to reduce the lower kth column
to zero� We have included debug statements in process col
� to help track the process� The
function pr	adbl
� prints the two dimensional array � we will soon write this function�
The function findpivot
� calls on function findnonzero
� to �nd a non
zero pivot in column

k if a�k��k� is zero� If a pivot is found� it swaps the appropriate rows and returns OK� Otherwise�
it reurns ERROR� The function findnonzero
� merely scans the lower column k for a non
zero
element� It either returns the row in which it �nds a non
zero element or it returns
� if no such
element is found� Rows of the array are swapped by the function swaprows
� which also includes
a debug statement to prints the row indices of the rows being swapped�
When uptriangle
� returns with OK status� the array will be in upper triangular form� The

next step in solving the equations is to employ back substitution to �nd the values of the unknowns�

���� AN EXAMPLE� LINEAR ALGEBRAIC EQUATIONS ���

�� File� gauss�h ��

typedef enum �ERROR� OK� status�

�define DEBUG

�define MAX �� �� maximum number of equations ��

status uptriangle
double a���MAX � ��� int n��

void process�col
double a���MAX � ��� int k� int n��

status findpivot
double a���MAX � ��� int k� int n��

int findnonzero
double a���MAX � ��� int k� int n��

void swaprows
double a���MAX � ��� int k� int j� int n��

status gauss
double a���MAX � ��� double x��� int n��

int getcoeffs
double a���MAX � ����

void pr	adbl
double a���MAX � ��� int n��

void pr�adbl
double x��� int n��

Figure ����� Header File for Gauss Functions

We now examine the back substitution process� As we saw earlier� we must solve equations
backwards starting at index n�� and proceeding to index �� The ith equation in upper triangular
form looks like this�

a�i��i��x�i� � a�i��i����x�i��� � ��� � a�i��n����x�n��� � a�i��n�

Recall� in our representation� the right hand side is the nth column of the two dimensional array�
For each index i� we must sum all contributions from those unknowns already solved for� i�e� those
x�i� with index greater than i� This is the following sum�

sum � a�i��i����x�i��� � ��� � a�i��n����x�n���

We then subtract this sum from the right hand side� a�i��n�� and divide the result by a�i��i�

to determine the solution for x�i�� The algorithm is shown below�

�� Algorithm� Back�Substitution ��

for
i � n � �� i �� �� i��� � �� go backwards ��

sum � ��

for
j � i � �� j �� n � �� j��� �� sum all contributions from ��

sum �� a�i��j� � x�j�� �� x�j� with j � i ��

x�i� �
a�i��n� � sum� � a�i��i�� �� solve for x�i� ��

�

We can now write the function gauss
� that solves a set of equations by the Gaussian elim

ination method which �rst calls on uptriangle
� to convert the coe�cients to upper triangular
form� If this succeeds� then back substitution is carried out to �nd the solutions� As with other
functions� gauss
� returns OK if successful� and ERROR otherwise� The code is shown in Figure
����� The code is straight forward� It incorporates the back substitution algorithm after the
function call to uptriangle
�� If the function call returns ERROR� the equations cannot be solved

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� gauss�c ��

�include �stdio�h�

�include �gauss�h�

�� Implements the Gauss method to transform equations to

an upper triangular form�

��

status uptriangle
double a���MAX � ��� int n�

� int i� j� k�

for
k � �� k � n� k��� �

if
findpivot
a� k� n� �� OK�

process�col
a� k� n��

else

return ERROR�

�

return OK�

�

�� Zeros out coefficients in column k below the main diagonal� ��

void process�col
double a���MAX � ��� int k� int n�

� int i� j�

double m�

for
i � k � �� i � n� i��� �

m � �a�i��k� � a�k��k��

for
j � k� j �� n� j���

a�i��j� �� m � a�k��j��

�ifdef DEBUG

printf
�Multiplier for row �d is �#�	f�n�� i� m��

pr	adbl
a� n��

�endif

�

�

Figure ����� Code for Functions to do Gaussian Elimination

���� AN EXAMPLE� LINEAR ALGEBRAIC EQUATIONS ���

�� Finds a non�zero pivot element in column k and row with

index �� k�

��

status findpivot
double a���MAX � ��� int k� int n�

� int j�

void swaprows
��

if
a�k��k� �� �� �

j � findnonzero
a� k� n��

if
j � ��

return ERROR�

else

swaprows
a� k� j� n��

�ifdef DEBUG

printf
�Rows �d and �d swapped�n�� k� j��

�endif

�

return OK�

�

�� Scans the rows with index �� k for the first non�zero element

in the kth column of the array !a! of size n�

��

int findnonzero
double a���MAX � ��� int k� int n�

� int i�

for
i � k� i � n� i���

if
a�i��k��

return
i��

return
����

�

�� Swaps the kth and the jth rows in the array !a! with n rows� ��

void swaprows
double a���MAX � ��� int k� int j� int n�

� int i�

double temp�

for
i � k� i �� n� i��� �

temp � a�k��i��

a�k��i� � a�j��i��

a�j��i� � temp�

�

�

Figure ����� Code for Functions to do Gaussian Elimination � continued

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� gauss�c � continued ��

�� Transforms equations to upper triangular form using Gauss

method� Then� solves equations� one at a time�

��

status gauss
double a���MAX � ��� double x��� int n�

� int i� j�

double sum�

if
uptriangle
a� n� �� ERROR� �

printf
�Dependent equations � cannot be solved�n���

return ERROR�

�

for
i � n � �� i �� �� i��� �

sum � ��

for
j � i � �� j �� n � �� j���

sum �� a�i��j� � x�j��

if
a�i��i��

x�i� �
a�i��n� � sum� � a�i��i��

else

return ERROR�

�

return OK�

�

Figure ����� Code for gauss
�

���� AN EXAMPLE� LINEAR ALGEBRAIC EQUATIONS ���

and gauss
� returns ERROR� Otherwise� gauss
� proceeds with back substitution and stores the
result in the array x��� Since all a�i��i� must be non
zero at this point� we do not really need
to test if a�i��i� is zero before using it as a divisor
 however� we do so as an added precaution�
We are almost ready to use the function gauss
� in a program� Before we can do so
 however�

we need some utility functions to read and print data� Here are the descriptions of these functions�

getcoeffs
�� reads the coe�cients and the right hand side values into an array
 it returns the
number of equations�

pr	adbl
�� prints an array with n rows and n � columns�

pr�adbl
�� prints a solution array�

All these functions use data of type double� The code is shown in Figure �����
Finally� we are ready to write a program driver as shown in Figure ����� The driver �rst reads

coe�cients and the right hand side values for a set of equations and then calls on gauss
� to
solve the equations� During the debug phase� both the original data and the transformed upper
triangular version are printed� Finally� if the equations are solved with success� the solution is
printed� Otherwise� an error message is printed� During debugging� the macro DEBUG is de�ned
in gauss�h so that we can track the process� The program loops as long as there are equations
to be solved� In each case� it gets coe�cients using getcoeffs
� and solves them using gauss
��
During debug� the program uses pr	adbl
� to print the original array and the array after gauss
transformation� If the solution is possible� the program prints the solution array using pr�adbl
��
Here are several example equation solutions�
Sample Session�

���Simultaneous Equations � Gauss Elimination Method���

Number of equations� zero to quit� �

Type coefficients and right side of each row

Row �� � � �
Row �� � � �

Original equations are�
����
��� 	���

��� ���� 	���

Multiplier for row � is �
���
����
��� 	���

���� ����� �����

Equations after Gauss Transformation are�
����
��� 	���

���� ����� �����

Solution is�

�����

����

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

�� File� gauss�c � continued ��

�� Function gets the coefficients and the right hand side of equations�

��

int getcoeffs
double a���MAX � ���

� int i� j� n�

printf
�Number of equations� zero to quit� ���

scanf
��d�� �n��

if
n�

printf
�Type coefficients and right side of each row�n���

for
i � �� i � n� i��� �

printf
�Row �d� �� i��

for
j � �� j �� n� j���

scanf
��lf�� �a�i��j���

�

return n�

�

�� Prints coefficients and right side of equations ��

void pr	adbl
double a���MAX � ��� int n�

� int i� j�

for
i � �� i � n� i��� �

for
j � �� j �� n� j���

printf
�����	f �� a�i��j���

printf
��n���

�

�

�� Prints the solution array ��

void pr�adbl
double x��� int n�

� int i�

for
i � �� i � n� i���

printf
�����	f�n�� x�i���

�

Figure ����� Code for Utility Functions for Gauss Program

���� AN EXAMPLE� LINEAR ALGEBRAIC EQUATIONS ���

�� File� gauss�c

Header Files� gauss�h

This program solves a number of simultaneous linear algebraic

equations using the Gauss elimination method� The process repeats

itself until number of equations is zero�

��

main
�

� double a�MAX��MAX � ��� �� coefficients and right hand side ��

double x�MAX�� �� solution ��

int n� �� number of equations ��

status soln� �� status of solution� OK or ERROR ��

printf
����Simultaneous Equations����n�n���

while
n � getcoeffs
a�� �

printf
��nOriginal equations are��n���

�ifdef DEBUG

pr	adbl
a� n��

�endif

soln � gauss
a� x� n��

�ifdef DEBUG

printf
��nEquations after Gauss Transformation are��n���

pr	adbl
a� n��

�endif

if
soln �� OK� �

printf
��nSolution is��n���

pr�adbl
x� n��

�

else printf
�Equations cannot be solved�n���

�

�

Figure ����� Driver Program for Gaussian Elimination

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

Number of equations� zero to quit� �

Type coefficients and right side of each row

Row �� � � � �
Row �� � � � �
Row 	� � � � �

Original equations are�
���� 	���
��� ����

����
��� 	��� ����

���� "��� 	��� ����

Multiplier for row � is �����
���� 	���
��� ����

���� ����� ������ ������

���� "��� 	��� ����

Multiplier for row 	 is �����
���� 	���
��� ����

���� ����� ������ ������

����� "��� 	��� ����

Multiplier for row 	 is ����
���� 	���
��� ����

���� ����� ������ ������

���� ���� ��	��� ��#���

Equations after Gauss Transformation are�
���� 	���
��� ����

���� ����� ������ ������

���� ���� ��	��� ��#���

Solution is�

���#"

��

��

Number of equations� zero to quit� �

Type coefficients and right side of each row

Row �� � � � �
Row �� � � � �
Row 	� � � � �

Original equations are�
���� 	���
��� ����

	��� ���� #��� $���

��� ���� "��� ����

Multiplier for row � is �	���

��
� COMMON ERRORS ���

���� 	���
��� ����

���� ���� ���� ����

��� ���� "��� ����

Multiplier for row 	 is �
���
���� 	���
��� ����

���� ���� ���� ����

���� ����� �	��� �
���
Rows � and 	 swapped

Multiplier for row 	 is ����
���� 	���
��� ����

���� ����� �	��� �
���

���� ����� ����� �����
Dependent equations � cannot be solved

Equations after Gauss Transformation are�
���� 	���
��� ����

���� ����� �	��� �
���

���� ����� ����� �����
Equations cannot be solved

Number of equations� zero to quit� �

The �rst two sets of equations are solvable
 the last set is not because the second equation
in the last set is a multiple of the �rst equation� Thus these equations are linearly dependent
and they cannot be solved uniquely� In this case� after the zeroth lower column is reduced to
zero� a������ is zero� A pivot is found in row �� rows � and � are swapped� and lower column
� is reduced to zero� However� a�	��	� is now zero� and there is no unique way to solve these
equations�
If the coe�cients are such that the equations are almost but not quite linearly dependent�

the solution can be quite imprecise� An improvement in precision may be obtained by using an
element with the largest absolute value as the pivot� Implementation of an improved version of
the method is left as an exercise�

��
 Common Errors

�� Failure to specify ranges of smaller dimensional arrays in declaration of formal parameters�
All but the range of the �rst dimension must be given in a formal parameter declaration�
Example�

init	
int aray	�����

�

���

�

Error# aray	 is a pointer to a two dimensional array� i�e� it points to an object that is a
one
dimensional array� aray	���� Without a knowledge of the size of the object� aray	����

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

it is not possible to access aray	���� aray	�	�� etc� Consequently� one must specify the
number of integer objects in aray	����

init	
int aray	���COLS��

� ���

�

Correct# aray	��� has COLS objects� It is possible to advance the pointer� aray	 correctly
to the next row� etc�

�� Failure to pass arguments correctly in function calls�

init	
aray	�MAX��COLS���

init	
aray	���COLS���

init	
aray	������

All of the above are errors� A two dimensional array name is passed in a function call�

init	
aray	��

�� Confusion between pointers to di�erent types of objects� For example� in the above� aray	
points to an array object� aray	���� whereas aray	��� points to an int object� The
expression aray	 � � points to aray	���� whereas aray	��� � � points to aray	�������
In the �rst case the pointer is increased by COLS integer objects� whereas in the second case
the pointer is increased by one integer object�

�� Confusion between arrays of character strings and arrays of character pointers�

char table�MAX��SIZE�� �ptraray�MAX��

The �rst declares table to be a two dimensional array that can be used to store an array of
strings� one each in table���� table���� table�i�� etc� The second declares ptraray to be
an array� each element of which is a char �� Read the declaration from the end� �MAX� says
it is an array with MAX elements
 ptraray is the name of the array
 char � says each element
of the array is a char �� Properly initialized with strings stored in table����� table�i� can
point to a string� Properly initialized with pointers to strings� ptraray�i� can also point
to a string� However� table�MAX��SIZE� provides memory space for the strings� whereas
ptraray�MAX� provides memory space only for pointers to strings� Both pointers may be
used in a like manner�

puts
table�i���

puts
ptraray�i���

They will both print the strings pointed to by the pointers�

���� SUMMARY ���

��� Summary

In this chapter we have seen that� in C� the concept of an array can be extended to arrays of
multi
dimensions� In particular� a two dimensional array is represented as a one dimensional
array� each of whose elements� themselves� are one dimensional arrays� i�e� and array or arrays�
Similarly� a three dimensional array is an array whose elements are each � dimensional arrays �an
array of arrays of arrays�� We have seen how such arrays are declared within programs and how
they are organized in memory �row major order�� We have seen how we can access the elements
of multi dimensional arrays using the subscripting notation and the correspondence between this
notation and pointer values� Because for higher dimensional arrays� the pointer expressions may
get complicated and confusing� in general� most programs use the subscripting notations for arrays
of two dimensions or more� We have also shown that when passing arrays to functions� the size of
all dimensions beyond the �rst must be speci�ed in the formal parameter list of the function so
that the location of all elements can be calculated by the compiler�
Throughout the chapter we have seen applications for which a two dimensional data structure

provides a convenient and compact way of organizing information� These have included data base
applications� such as our payroll and student test score examples� as well as using two dimensional
arrays to store an array of strings� We have seen how we can then use this later data structure to
search and sort arrays of strings� and have shown that for this data type� as well as other large
data types� it is often more e�cient to work with arrays of pointers when reordering such data
structures�
Finally� we have developed a rather large application using �D arrays � solutions to simulta

neous linear equations usinf Gaussian elimination� This is one algorithm for doing computations
in the realm of linear algebra
 several additional examples common in engineering problems are
presented in Chapter ���
One last point to remember about multi
dimensional arrays� this data structure is a very useful

way to organize a large collection of data into one common data structure
 however� all of the
data items in this structure must be of the same type� In the next chapter we will see another
compound data type provided in C which does not have such a restriction � the structure�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

��� Exercises

Given the following declaration�

int x�����	���

Explain what each of the following represent�

�� x

�� x � i

�� �
x � i�

�� �
x � i� � j

�� �
�
x � i� � j�

�� x���

�� x�i�

�� x�i� � j

�� �
x�i� � j�

Find and correct errors if any� What does the program do in each case�

��� main
�
� int x��������

init
x������

�

void init
int a�����

� int i� j�

for
i � �� i � ��� i���

for
j � �� j � �� j���

a�i��j� � ��

�

��� main
�
� int x��������

init
x������

�

void init
int �a�

� int i� j�

���� EXERCISES ���

for
i � �� i � ��� i���

for
j � �� j � �� j��� �

�a � ��

a���

�

��� main
�
� char s���������

read�strings
s��

print�strings
s��

�

read�strings
char s��������

�

for
i � �� i � �� i��� �

gets
�s��

s���

�

�

print�strings
char s��������

�

while
�s� �

puts
s��

s���

�

�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

��� Problems

�� Read id numbers� project scores� and exam scores in a two dimensional array from a �le�
Compute the averages of each project and exam scores
 compute and store the weighted
average of the scores for each id number�

�� Repeat �� but sort and print the two dimensional array by weighted average in decreasing
order� Sort and print the array by id numbers in increasing order� Use an array of pointers
to sort�

�� Repeat �� but plot the frequency of each weighted score�

�� Combine �
� into a menu
driven program with the following options� read names� id numbers�
and scores from a �le
 add scores for a new project or exam
 save scores in a �le
 change
existing scores for a project or an exam for speci�ed id numbers
 delete a data record
 add
a data record
 compute averages
 sort scores in ascending or descending order by a primary
key� e�g� id numbers� weighted scores� etc�
 compute weighted average
 plot frequency of
weighted scores
 help
 quit�

�� Write a function that uses binary search algorithm to search an array of strings�

�� Write a function that sorts strings by selection sort in either increasing or decreasing order�

�� Write a program that takes a string and breaks it up into individual words and stores them�

�� Repeat � and keep track of word lengths� Display the frequency of di�erent word lengths�

�� Repeat �� but store only new words that occur in a string� If the word has already been
stored� ignore it�

��� Write a function that checks if the set of words in a string� s� represents a subset of the set
of words in a second string� t� That is� the words of s are all contained in t� with t possibly
containing additional words�

��� Write a menu
driven spell check program with the following options� read a dictionary from
a �le
 spell check a text �le
 add to dictionary
 delete from dictionary
 display text bu�er

save text bu�er
 help
 quit�

The dictionary should be kept sorted at all times and searched using binary search� Use
an array of pointers to sort when new entries are inserted� In the spell check option� the
program reads in lines of text from a �le� Each word in a line is checked with the dictionary�
If the word is present in the dictionary� it is ignored� Otherwise� the user is asked to make
a decision� replace the word or add it to the dictionary� Either replace the word with a new
word in the line or add the word to dictionary� Each corrected line is appended to a text
bu�er� At the quit command� the user is alerted if the text bu�er has not been saved�

��� Write a simple macro processor� It reads lines from a source �le� Ignoring leading white
space� each line is examined to see if it is a control line starting with a symbol $ and followed
by a word 	de�ne	� If it is� store the de�ned identi�er and the replacement string� Each
line is examined for the possible occurrence of each and every de�ned identi�er
 if a de�ned

���� PROBLEMS ���

identi�er occurs in a line� replace it with the replacement string� The modi�ed line must be
examined again to see if a de�ned identi�er exists
 if so� replace the identi�er with a string�
etc�

��� Write a lexical scanner� scan
�� which calls nexttok
� of Problem �� to get the next token
from a string� Each new token or symbol of type identi�er� integer� or �oat that is found
is stored in a symbol table� The token is inserted in the table if and only if it was not
already present� A second array keeps track of the type of each token stored at an index�
The function scan
� uses srcharay
� to search the array of tokens� uses inserttok
� to
insert a token in an array� and uses inserttype
� to insert type of a token�

The function scan
� returns a token in a string� type of the token� and index where the
token is stored in the array� If the array is �lled� a message saying so must be displayed�

Write a program driver to read strings repeatedly� For each string� call scan
� to get a
token� As scan
� returns� print the token� its type� and index� Repeat until an end of string
token is reached� When the end of �le is encountered� print each of the tokens� its type� and
index�

��� Write routines for drawing lines and rectangles� Write a program that draws a speci�ed
composite �gure using a character !�!� Allow the user to specify additions to the �gure and
display the �gure when the user requests�

��� Modify �� to a menu
driven program that allows� draw horizontal and vertical lines� hori

zontally oriented rectangles� �lled rectangles� display �gure� help� and quit�

��� Write a program that plays a game of tic
tac
toe with the user� The game has three rows
and three columns� A player wins when he succeeds in �lling a row or a column or a diagonal
with his mark� !�!� The program uses !�!� Write and use the following functions�

init board
�� initialize the board

display board
�� dispays the board

enter move
�� for user to enter a move in row and col

state of game
�� test state� �nish or continue

��� Modify the Gauss Method so that a pivot with the largest magnitude is used in converting
the array of coe�cients to an upper triangular form�

��� Modify �� to a menu
driven program that allows the following commands� Get coe�cients�
display coe�cients� solve equations� display solution� verify solution� help� and quit� Write
and use functions get coeffs
�� display coeffs
�� solve eqns
�� display soln
�� verify soln
��
help
��

��� Modify �� so that the input data is in the form�

a�� x� � a�� x� � a�	 x	 � b�

��� Modify �� so that display coe�cients displays equations in the above form�

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

��� Write a simple menu driven editor which allows the following commands� text insert� display
text� delete text� delete lines� insert lines� �nd string� �nd word� replace string� replace word�
help� and quit� A window should display part of the text when requested�

PART II

���

��� CHAPTER �� TWO DIMENSIONAL ARRAYS

Chapter ��

Sorting and Searching

One very common application for computers is storing and retrieving information� For example�
the telephone company stores information such as the names� addresses and phone numbers of its
customers� When you dial directory assistance to get the phone number for someone� the operator
must look up that particular piece of information from among all of data that has been stored�
Taken together� all of this information is one form of a data base which is organized as a collection
of records� Each record consists of several �elds� each containing one piece of information� such as
the name� address� phone number� id number� social security number or part number� etc��

As the amount of information to be stored and accessed becomes very large� the computer
proves to be a useful tool to assist in this task� Over the years� as computers have been applied to
these types of tasks� many techniques and algorithms have been developed to e�ciently maintain
and process information in data bases� In this chapter� we will develop and implement some of
the simpler instances of these algorithms� The processes of �looking up	 a particular data record
in the data base is called searching� We will look at two di�erent search algorithms
 one very
easy to implement� but ine�cient� the other much more e�cient� As we will see� in order to do
an e�cient search in a data base� the records must be maintained in some order� For example�
consider the task of �nding the phone number in the phone book of someone whose name you
know� as opposed to trying to �nd the name of someone whose phone number you know in the
same book�

The process of ordering the records in a data base is called sorting� We will discuss three sorting
algorithms and their implementation in this chapter� as well� Sorting and searching together
constitute a major area of study in computational methods� We present some of these methods
here to introduce this area of computing as well as to make use of some of the programming
techniques we have developed in previous chapters�

As we develop these algorithms� we use a very simple data base of records consisting of single
integers only� We conclude the chapter by applying the searching and sorting techniques to our
payroll data base with records consisting of multiple numeric �elds� In Chapter � we will see how
these same algorithms can be applied to string data types described in Chapter ���

�
�� Finding a Data Item � The Search Problem

Suppose we have a collection of data items of some speci�c type �e�g� integers�� and we wish to
determine if a particular data item is in the collection� The particular data item we want to �nd

���

��� CHAPTER ��� SORTING AND SEARCHING

� � � �

index

key �� �

� � � MAX

Figure ����� Sequential Search

is called the key and out task is to search the records in the data base to �nd one which �matches	
the key�
The �rst decision we must make is how to represent the collection of data items� In Chapter

� we saw a data structure which could hold a collection of data items all of the same type� the
array� So we can consider our data base of integer values to be stored in an array� Our task then
becomes�

Task�

SRCH�� Search an array for an index where the key is located
 if key is not present� print a
message� Repeat until an end of �le is entered for the key�
In this task� we choose to return the index where the key is located because this index will

allow us to retrieve the entire record in the case where our array is part of a database� The
simplest approach to determine if a key is present in an array is to make an exhaustive search of
the array� Start with the �rst element� if the key matches� we are done
 otherwise move on to the
next element and compare the key� and so on� We simply traverse the array in sequence from the
�rst element to the last as shown in Figure ����� Each element is compared to the key� If the
key is found in the array� the corresponding array index is returned� If the item is not found in
the array� an invalid index� say
�� is returned� This type of search is called Sequential Search or
Linear Search because we sequentially examine the elements of the array� In the worst case� the
number of elements that must be compared with the key is linearly proportional to the size of the
array�
Linear search is not the most e�cient way to search for an item in a collection of items
 however�

it is very simple to implement� Moreover� if the array elements are arranged in random order� it is
the only reasonable way to search� In addition� e�ciency becomes important only in large arrays

if the array is small� there aren�t many elements to search and the amount of time it takes is not
even noticed by the user� Thus� for many situations� linear search is a perfectly valid approach�
Here is a linear search algorithm which returns the index in the array where key is found or
� if
key is not found in the array�

initialize index i to �

traverse the array until exhausted

if array�i� matches key

return i�

return ���

