Lehrstuhl für Angewandte Softwaretechnik Applied Software Engineering
Home | OOSE | Prentice Hall | Applied Software Engineering

Preface

The K2 towers at 8,611 meters in the Karakorum range of the western Himalayas. It is the second highest peak of the world and is considered the most difficult 8000er to climb. An expedition to the K2 typically lasts several months in the summer, when the weather is most favorable. Even in summer, snowstorms are frequent. An expedition requires thousands of pounds of equipment, including climbing gear, severe weather protection gear, tents, food, communication equipment, and pay and shoes for hundreds of porters. Planning such an expedition takes a significant amount of time in the life of a climber and requires dozens of participants in supporting roles. Once on site, many unexpected events, such as avalanches, porter strikes, or equipment failures, will force the climbers to adapt, find new solutions, or retreat. The success rate for expeditions to the K2 is currently less than 40%.

The United States National Airspace System (NAS) monitors and controls air traffic in the United States. The NAS includes more than 18,300 airports, 21 air route traffic control centers, and over 460 control towers. These add up to more than 34,000 pieces of equipment, including radar systems, communication switches, radios, computer systems, and displays. The current infrastructure is aging rapidly. The computers supporting the 21 air route traffic control centers, for example, are IBM 3083 mainframes that date back to the early 1980s. In 1996, the United States government initiated a program to modernize the NAS infrastructure, including improvements such as satellite navigation, digital controller/pilot communications, and a higher degree of automation in controlling the air routes, deciding the order in which aircraft land, and controlling ground traffic as aircraft move from and to the runways. Such a complex infrastructure, however, can only be modernized incrementally. Consequently, while new components offering new functionality are introduced, older components still need to be supported. For example, during the transition period, a controller will have to be able to use both analog and digital voice channels to communicate with pilots. Finally, the modernization of the NAS coincides with a dramatic increase in global air traffic, predicted to double within the next 10–15 years. The previous modernizing effort of the NAS, called the Advanced Automation System (AAS), was suspended in 1994 because of software-related problems, after missing its initial deadline by several years and exceeding its budget by several billions of dollars.

Both of the above examples discuss complex systems in which external conditions can trigger unexpected changes. Complexity puts the problem beyond the control of any single individual. Change forces participants to move away from well-known solutions and to invent new ones. In both examples, several participants need to cooperate and develop new techniques to address these challenges. Failure to do so results in failure to reach the goal.

This book is about conquering complex and changing software systems.

The theme

The application domain (mountain expedition planning, air traffic control, financial systems, word processing) usually includes many concepts that software developers are not familiar with. The solution domain (user interface toolkits, wireless communication, middleware, database management systems, transaction processing systems, wearable computers) is often immature and provides developers with many competing implementation technologies. Consequently, the system and the development project are complex, involving many different components, tools, methods, and people.

As developers learn more about the application domain from their users, they update the requirements of the system. As developers learn more about emerging technologies or about the limitations of current technologies, they adapt the system design and implementation. As quality control finds defects in the system and users request new features, developers modify the system and its associated work products. The result is continuous change.

Complexity and change represent challenges that make it impossible for any single person to control the system and its evolution. If controlled improperly, complexity and change defeat the solution before its release, even if the goal is in sight. Too many mistakes in the interpretation of the application domain make the solution useless for the users, forcing a retreat from the route or the market. Immature or incompatible implementation technologies result in poor reliability and delays. Failure to handle change introduces new defects in the system and degrades performance beyond usability.

This book reflects more than 10 years of building systems and of teaching software engineering project courses. We have observed that students are taught programming and software engineering techniques in isolation, often using small problems as examples. As a result, they are able to solve well-defined problems efficiently, but are overwhelmed by the complexity of their first real development experience, when many different techniques and tools need to be used and different people need to collaborate. Reacting to this state of affairs, the typical undergraduate curriculum now often includes a software engineering project course, organized as a single development project.

The tools: UML, Java, and Design Patterns

We wrote this book with a project course in mind. The book can be used, however, in other situations as well, such as short and intensive workshops or short-term R&D projects. We use examples from real systems and examine the interaction among state-of-the art techniques, such as UML (Unified Modeling Language), Java-based technologies, design patterns, design rationale, configuration management, and quality control. Moreover, we discuss project management related issues that are related to these techniques and their impact on complexity and change.

The principles

We teach software engineering following five principles:

These five principles are the basis for this book. They encourage and enable the reader to address complex and changing problems with practical and state-of-the-art solutions.

The book

This book is based on object-oriented techniques applied to software engineering. It is neither a general software engineering book that surveys all available methods nor a programming book about algorithms and data structures. Instead, we focus on a limited set of techniques and explain their application in a reasonably complex environment, such as a multi-team development project that includes 20 to 60 participants. Consequently, the book also reflects our biases, our strengths, and our weaknesses. We hope, nevertheless, that all readers will find something they can use. The book is structured into 16 chapters organized into three parts, which can be taught as a semester-long course.

Part I, Getting Started, includes three chapters. In this part, we focus on the basic skills necessary for a developer to function in a software engineering context.

In Part II, Dealing with Complexity, we focus on methods and technologies that enable developers to specify, design, and implement complex systems.

In Part III, Managing Change, we focus on methods and technologies that support the control, assessment, and implementation of changes throughout the development of a system.

The topics above are strongly interrelated. To emphasize their relationships, we selected an iterative approach. Each chapter consists of five sections. In the first section, we introduce the issues relevant to the topic with an illustrative example. In the second section, we describe briefly the activities of the topic. In the third section, we explain the basic concepts of the topic with simple examples. In the fourth section, we detail the technical activities with examples from real systems. Finally, we describe management activities and discuss typical trade-offs. In Chapters 4–10, we present a running case study of a complex multi-user game management system called ARENA. By repeating and elaborating on the same concepts in increasingly complex examples, we hope to provide the reader with an operational knowledge of object-oriented software engineering.

The courses

Building a large, complex system can be compared with climbing a big mountain. It is good to have a route description, but the route can never be completely mapped out, as new crevasses may open anytime. Even though we map out our software engineering knowledge in this book, changes will occur and methods that we believe in now may be out of date soon. How can we teach students to cope with such rapidly changing conditions? For us, the most important thing to pass on to a student is not only knowledge of the map, but also the ability to negotiate the terrain. Although it is wise to study the description of a route, there is no substitute for the experience of actually traveling the route.

We wrote this book for a semester-long software engineering project course for senior or graduate students. We assume that students have experience with a programming language such as C, C++, C#, or Java. We expect that students have the necessary problem-solving skills to attack technical problems, but we do not expect that they have been exposed to the complex or changing situations typical of system development. This book can also be used for other types of courses, such as short, intensive professional courses. Project and senior-level courses.

A project course should include all the chapters of the book, roughly in the order presented. An instructor may consider teaching more advanced project management concepts from Chapter 14, Project Management, early in the course so that students become familiar with planning and controlling.

Changes since the first edition

The second edition of this book started as a well-scoped project. Our goal was to add two new chapters and a case study to address the feedback we received from the first users of our book. The work was to last one year.

Two years later, we found ourselves with four new chapters and a complete overhaul of many of the existing chapters. Between adding detailed examples, keeping up with the latest developments in software engineering, maintaining the coherence of the book, and meeting the schedule, we decided to compromise on the schedule. We hope that the quality of the final product reflects the delay. We thank Alan Apt, our publisher, for his infinite patience. We made the following changes:

About the authors

Dr. Bernd Bruegge has been studying and teaching Software Engineering at Carnegie Mellon University for 20 years, where he received his masters and doctorate degrees. He received his Diplom from the University of Hamburg. He is now a university professor of Computer Science with a chair for Applied Software Engineering at the Technische Universität München and an adjunct faculty member of Carnegie Mellon University. He has taught object-oriented software engineering project courses on the text materials and website described in this book for 15 years. He won the Herbert A. Simon Excellence in Teaching Award at Carnegie Mellon University in 1995. Bruegge is also an international consultant and has used the techniques in this book to design and implement many real systems, including an engineering feedback system for DaimlerChrysler, an environmental modeling system for the U.S. Environmental Protection Agency, and an accident management system for a municipal police department, to name just a few.

Dr. Allen Dutoit is a Research Scientist at the Technische Universität München. He received his M.S. and Ph.D. from Carnegie Mellon University and his Diplôme d’Ingénieur from the Swiss Federal Institute of Technology in Lausanne. He has been teaching software engineering project courses with Professor Bruegge since 1993, both at Carnegie Mellon University and the Technische Universität München, where they used and refined the methods described in this book. Dutoit’s research covers several areas of software engineering and object-oriented systems, including requirements engineering, rationale management, distributed development, and prototype-based systems. He was previously affiliated with the Software Engineering Institute and the Institute for Complex Engineered Systems at Carnegie Mellon University.

Revision r1.1 - 26 Sep 2003 - 09:48 GMT - Copyright © 2003, Prentice Hall.