Galen Sasaki, Department of Electrical Engineering, University of Hawaii

Explanation of PIC 16F648A processor data sheet -- Part 2: More on the PIC

This is the second of the three part overview of the PIC 16F648A processor. We will first discuss the timer
module and prescalar. Then we will discuss further about the PIC architecture (especially the instruction
processing cycle), and finally give another tutorial about MPLAB and breakpoints.

Timer Module and Prescalar

Many applications of the PIC require that the processor fulfill timing requirements. For example, in the
testlabl.c example from Lab 2.1, the program required a quarter-second delay function. This function was
implemented by having it call another function, which had a 1ms delay, which was written so that it uses a
certain number clock cycles given the clock rate. The problem with this approach is that the programmer
must carefully count the number of machine instructions.

An alternative approach is to use a timer circuit which indicates how much time has elapsed. The PIC has
three timer circuits. We will focus our attention on one of these circuits called TIMERO (you can find the
description of TIMERO in the PIC documentation on page 47). It is an 8-bit timer/counter, and in many cases
can be accessed like a variable. It can be configured so that it will increment every clock cycle. Next is a naive
example implementation of using TIMERO. It is a delay function of 100 clock cycles. However, there are
problems with this implementation as we shall see. Also note that TIMERO can be accessed using the C
language with the variable name TMRO.

void delayNaive() // A delay of (approximately) 100 clock cycles

{
TMRO = 0; // Clears the TIMERO circuit

// From this point, the TIMERO circuit runs on its own.
// 1t increments with each clock cycle.
while (TMRO < 100); // This checks when 100 clock cycles have elapsed

}

If we wanted to increase the delay to more clock cycles, e.g., 2000 clock cycles, we cannot do it because
TIMERO is limited to 8-bits, and therefore limited to a maximum value of 255.

To get a longer delay, we can use the prescalar. The prescaler slows TIMERO down by reducing the clock signal
rate to TIMERQO. The options of rates are 1:2, 1:4, 1:8,...., or 1:256. Note that the step-down values are all
powers of two.

The next delay function “delayNaive2” (see below) has a delay of approximately 10,000 clock cycles. First, we
configure the prescalar to 1:256. Thus, the timer will increment every 256 clock cycles. The function will
terminate when TIMERO = 40, i.e., after 40 x 256 = 10,240 clock cycles. Thus, “delayNaive2” has a delay of
approximately 10,000 clock cycles.

Galen Sasaki, Department of Electrical Engineering, University of Hawaii

#include <htc.c>

void delayNaive2();

main() {
TOCS = 0;
PSA = 0;
PS2 = 1;
PS1 = 1;
PSO = 1;

The rest of the program include function-calls to delayNaive2()

}

void delayNaive2() // A delay of (approximately) 10000 clock cycles
{

TMRO = 0O;

while (TMRO < 40);

be

The main() function initializes the following bits:

e TOCS (bit 5): TOCS determines if TIMERO is in Timer or Counter Mode, where TOCS = 0 means Timer
Mode.

e PSA (bit 3): The prescalar can be assigned to TIMERO or the watch dog timer. Clearing PSA to 0 will
assign the prescalar to TIMERO. PSA =1 assigns TIMERO to the watch dog timer. We want PSA = 0 for
our delay function.

e PS2-PSO (bits 2-0): Determines the step down rate of the prescalar. PS2-PSO = 111 means 1:256, while
PS2-PS0O = 000 means 1:2.

These bits are part of the OPTION register, which a programmer can use to configure the PIC. See Figure 1 for
a portion of a table in the PIC documentation describing the register. Figure 2 has a more detailed description
of the OPTION register from the documentation.

Galen Sasaki, Department of Electrical Engineering, University of Hawaii

TABLE 4-6: SPECIAL FUNCTION REGISTERS SUMMARY BANK3

Value on Details
Address Hame Bit T Bit & Bit & Bit 4 Bit3 Bit 2 Bit 1 Bit 0 FOR
Resatil] on Page
Bank 3
180h INDF Addressing this location uses contents of FSR to address data memory (not a physical register) | sooor oo 3o
181h OPTION REFU INTEDG | TOCS | TOSE | PSA | P52 | P51 | PS0 1111 1111 25
Figure 1. Table 4-6 from the data sheet for the PIC on page 23.
REGISTER 4-2: OPTION_REG - OPTION REGISTER (ADDRESS: 81h, 181h)
RW-1 RAW-1 RAW-1 RMAW-1 RMAW-1 RAW-1 R/W-1 RW-1
RBPU | INTEDG | Tocs | TosE | Psa | Ps2 | Pst | Pso |
bit 7 bit 0

bit 7 RBPU: PORTE Full-up Enable bit

1 = PORTB pull-ups are disabled

0 = PORTEB pull-ups are enabled by individual port latch values
bit 6 INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RBO/IMT pin

0 = Interrupt on falling edge of RBO/INT pin
bit 5 TOCS: TMRO Clock Source Select bit

1 = Transition on RA4ATOCKICMP2 pin
0 = Intemnal instruction cycle clock (CLKOUT)

bit 4 TOSE: TMRO Source Edge Select bit

1 = Increment on high-to-low transition on RAATOCKI/CMP2 pin
0 = Increment on low-to-high transition on RAATOCKICMP2 pin

bit 3 PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT
0 = Prescaler is assigned to the Timer() module

bit 2-0 PS<2:0=: Prescaler Rate Select bits
Bit Value TMRO Rate WDT Rate

000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8
100 1:32 1:16
101 1:64 1:32
110 1:128 1:64
111 1:256 1:128

Figure 2. From page 25 of the PIC documentation, a description of the OPTION register. Legend: W = writable, R =
readable, U = unimplemented, x = unknown.
3

Galen Sasaki, Department of Electrical Engineering, University of Hawaii

The other bits of the OPTION register are irrelevant for our purposes. (For example, TOSE (bit 4) is used when
TIMERO is in Counter Mode, but we use Timer Mode.)

Note that the default value of the bits is 1 — see “Value on POR Reset” in Figure 1. Thus, PS2, PS1, and PSO are
already set to 1, and our setting them in the program is redundant. We do it anyway to be safe.

The following is an example of a modification of testlabl.c using TIMERO. There are no assembly language
instructions.

/* This will blink an LED on-and-off */

#include <htc.h> // Header file for PIC processor library files
void delay_10us(unsigned chart); //t*10us delay

void delay_ms(long t); // t ms delay

main(void)

{

PSA =0; // Use TIMERO rather than Watch Dog Timer

TOCS =0; // TIMERO in timer mode rather than counter mode
PS2 =1; PS1 =1; PSO = 1; // Prescale rate of 256:1

TRISB = 0x00; /* All ports of PORTB are outputs */

while(1) { /* Turn RBO and RB1 on-and-off */

RBO = 0;
delay_ms(250); // Delay of a quarter-second
RBO =1;

delay_ms(250); // Delay of a quarter-second
} /* End while-loop */
} /* End main */

void delay_ms(long t) // delays t ms (approximately) assuming 1 instruction per clock cycle

{

long k;

for (k=0; k<t; k++){
TMRO = 0;
while(TMRO < 4); /* This while-loop waits until TMRO = 4, since 4 x 256 is about 1000 */
}

Galen Sasaki, Department of Electrical Engineering, University of Hawaii

Now we discuss some details. First notice the difference in the delay loops of Lab 2.1 and the one above. In
Lab 2.1, the delay loop was a loop of instructions. The clock cycles of these instructions had to be counted to
ensure that the loop provided the exact delay. The delay loop above is done by the TIMERO circuit. The
program “polls” the TIMERO to determine its value and whether the delay has expired.

TOIF bit. This is a “flag” that indicates when the TIMERO circuit has an “overflow”, which means that
the value has become so large that it can’t fit into the TIMERO. In particular, note that TIMERO has values from
0 through 255 (which is OxFF in hexadecimal). When TIMERO reaches the value 255, it cannot get any larger.
So it “wraps around” and goes back to zero. Whenever this wrap around occurs, the TOIF flag is set to 1. You

can manually clear the TOIF flag with the C language instruction “TOIF = 0;”. An alternative to the delay_ms
function above is the following:

void delay_ms(long t) // delays t ms (approximately) assuming 1 instruction per clock cycle

{

long k;
for (k=0; k<t; k++) {
TMRO = 256 - 4; // Initialize TIMERO so that it increments 4 times before wraparound
TOIF = 0; // Clear TOIF flag
while(TOIF == 0); // Wait until TOIF flag becomes 1
}
}

This is an indirect way to implement the delay. However, it is an example of using the TOIF flag. The flag can
also be used with “interrupts” but we have not covered interrupts yet — we will in the next lab.

Finally, note that the TOIF flag is bit 2 of the INTCON register.

Instruction Cycle. There is a clock cycle and an instruction cycle. The clock cycle comes from the clock
signal, such as the crystal or internal clock circuitry. The instruction cycle is made up of four clock cycles. The
clock cycles of an instruction cycle are labeled Q1, Q2, Q3, and Q4. Each instruction typically takes two
instruction cycles to execute: the first is fetching the instruction from memory, and the second is the actual
execution of the instruction. The PIC has a pipelined architecture, so typically a new instruction is fetched per
instruction cycle. That means that the rate at which instructions are being executed is typically one instruction
per instruction cycle. The relationship between clock cycle and instruction cycle is explained on page 15 of the
data sheet of the PIC. Figure 3 shows a timing diagram relating the clock cycles and instruction cycles.

Galen Sasaki, Department of Electrical Engineering, University of Hawaii

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE
| Qi | a3 | @4 1 Q1 | @2 | @ | a4 | Q1 | Q2 | Q3 | a4 |
osci W K_\J_\I_,—‘a e e T
o _— N I
— B | | B Ly
Q3 \ .
= / \ |) | f "—‘ clock
) / I | “ |
PC { PC X PC+1 K PCZ I
CLKOUT |\ f b ! S
| Felch INSTPC) |
, EXecie INST(PC - T) FElCN INST{PC 1)
[Execute INST (PC) Fetch INST (PC + 2)
| | Execuie INS T [FT + TJ

Figure 3. Clock cycle and instruction cycle relationship from page 15 of the data sheet.

TIMERO, without the prescalar, will increment on every instruction cycle. Of course, with the prescalar,
TIMERO will reduce the rate of incrementing according to the chosen prescalar value, e.g., 1:16.

In this lab, we use a 4 MHz external crystal oscillator. Thus, the rate of the instruction cycles is 1 MHz.
Polling. The following is another way to implement delay_ms().

void delay_ms(long t) // delays t ms (approximately) assuming 1 instruction per clock cycle

{

long k=0;
TMRO = 256-4;
TOIF = 0;

while(1) {
if (TOIF) { // 1 ms has elapsed

k++; // Keep track of number of elapsed milliseconds
TMRO = 256 — 4; // Reset TIMERO

TOIF=0
}
if (k >=t) return; // If t ms has elapsed then stop the delay
}
}

Galen Sasaki, Department of Electrical Engineering, University of Hawaii

Note that the while-loop keeps checking if TOIF became “1” because this means that 1 ms has elapsed.
Regularly checking a variable (or some other device) is known as “polling”. Also note that both if-statements
are run during every pass of the while-loop. However, they actually do something only occasionally.

OPTION Register. In the previous examples, bits in the OPTION register had their own names, e.g.,
PSA, TOCS, PS2, PS1, and PSO. These names can be used as variables and the corresponding bits can be set by
using an assignment instruction, e.g., PS2 = 0.

The OPTION register has its own variable name, called OPTION_REG. So the entire register can have its value
initialized with one assignment instruction, e.g., OPTION_REG = Ob00000111 (here, “Ob” is a prefix for a
binary number). We can clear the bits of PSA and TOCS in one instruction, and set the bits of PS2, PS1, and
PSO in another instruction (in the example below, “Ob” is the prefix for a binary number):

// In the following instruction, we clear TOCS (bit 5) and PSA (bit 3).
// Note that bits 5 and 3 are ANDed to “0”, which will clear them; while
// the other bits are ANDed to ““1”, which leaves them alone.

n = OPTION_REG & 0b11010111;

// The following will set the prescalar to 256:1 by setting the bits

// PS2 (bit 2), PS1 (bit 1), and PSO (bit 0) to “1”. This is done by

// ORIng the bits to “1”. The other bits are left alone by ORing them to “0”.
OPTION_REG = n | Ob00000111;

Galen Sasaki, Department of Electrical Engineering, University of Hawaii

Hardware of Prescalar. Figure 3 shows the schematic diagram of the TIMERO module and prescalar. FOSC/4

is the instruction clock of the PIC. Notice how it is routed through

e Two multiplexers (controlled by PSA and TOCS)

e The prescalar (which is an 8-bit counter). This counter has 8 outputs, each generates a periodic signal.

We will discuss this output shortly.

e One of the counter’s outputs is selected by an 8:1 multiplexer (controlled by PS2, PS1, PS0O), and that

signal is routed to the TIMERO register.

Foscid Data Bus
I — "ﬁ"'
| }Es
TOCK N
L — 1
- I -, 1 SYNC
pin 1 TMRO Reg |
JL KF +yc oS é
TOSE T0CS
Sef flag bit TOIF
TMR source on Overflow
[~
o WDT PoNcaler/
Watchdog : TMRO Presgaler
Timer
a
PSA A%
\ oMU PS<2:0=
A
WOT Enable bit
1
WDT
0 Time-out
PSA

Mote: TOSE, TOCS, PSA, PS=2:0= are hits in the Option Register.

Figure 3. TIMERO and prescaler circuitry from Figure 6-1 on page 48 of the datasheet of the PIC.

To understand the output of the prescalar counter, consider its values with each instruction cycle as shown
the next table.

in

Galen Sasaki, Department of Electrical Engineering, University of Hawaii

Cycle Prescalar Output | Bit1 | BitO
0 00000000 0 0
1 00000001 0 1
2 00000010 1 0
3 00000011 1 1
4 00000100 0 0
5 00000101 0 1
6 00000110 1 0
7 00000111 1 1

The table has the value of the prescalar output with each instruction cycle. It also shows Bits 1 and 0 of the
output in isolation. Notice that Bit O is a periodic signal with a period of 2 cycles, and Bit 1 is a periodic signal
with a period of 4 cycles. Thus, Bits 0 and 1 have step-down rates of 1:2 and 1:4, respectively. The prescalar is
also known as a “step down counter” since it provides clock signals at a slower rate.

Here’s a couple of tips about choosing the step-down rate. The first tip is in regards to our delay_ms example
above. Recall that PS2, PS1, and PSO were chosen so that the step-down rate was 1:256. This means that the
TOIF flag goes to “1” every 256 instruction cycles. Whenever, TOIF goes to “1”, let’s call that a “tick” of the
clock. Actually, all of these “ticks” correspond to 256 instruction cycles, except possibly the first. The first tick
may be less, and perhaps much less, than 256 instruction cycles. That’s because when the CPU jumps into the
program that checks TOIF, it may at a time during the middle rather than at the beginning of a tick.

The delay_ms is basically a delay loop that counts 4 ticks. However, the first may be less than a full tick. Since
there are only four ticks in the delay loop, the inaccuracy of the first tick may lead to significant error in the
overall delay.

The second tip is a possible problem if the step-down rate is too small, e.g., 1:2. Then that segment of the
program that checks for ticks may be too long compared to a tick. In other words, the program segment is too
slow to detect each tick.

Instruction Processing Cycle

Like all computers, the PIC follows an instruction processing cycle, sometimes known as the Von Neumann
processing cycle (named after a famous mathematician and computer scientist John Von Neumann). This
cycle is basically what computers do continually. Figure 4 shows this cycle. It is a loop of:

1. Fetch instruction (from program memory).
2. Decode instruction (so that the CPU understands the instruction and what’s to be done).
3. Execute instruction.

Galen Sasaki, Department of Electrical Engineering, University of Hawaii

I

Instruction Fetch

|
Instruction Decode

Instruction Execute

Figure 4. Instruction processing cycle.

The PIC is organized so that the Instruction Fetch and Decode is done in one instruction cycle, and Execute is
done in another instruction cycle. Fetch/Decode and Execute can be pipelined as shown in Figure 5.

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

MOVLW 55h Fetch 1 Execute 1

MOVWEF DPORTE Fetch 2 Execute 2

CALL SUE_1 Fetch 3 Execute 3

= Ld k3

BEF PORTA, 3 Fetch 4 Flush
Fetch SUB_1|Execute SUEB 1

Note: Al instructions are single cycle except for any program branches. These take two cycles since the fetch
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.

Figure 5. The pipeline in the PIC from page 15 of the data sheet.

Figure 6 has the portion of the block diagram of the PIC that is involved with fetch, decode, and execute
instruction. To fetch the instruction, the CPU will use the Program Counter, which points to the next
instruction to execute. The fetched instruction is stored in the Instruction Register. The output of the
Instruction Register is connected to the circuitry called Instruction Decode and Control. This circuitry will first
decode the instruction so that the CPU understands what the instruction is. Then it will send control signals to
the datapath of the computer to execute the instruction (note that the control lines are not shown, probably
because it would make the diagram very messy to look at).

10

Galen Sasaki, Department of Electrical Engineering, University of Hawaii

——F Program Counfer

Flash
Program
Memory
B-Lewvel Stack
[13-bit)
Program 14
Bus RAM &

%

Instruction Reg

| Direct Addr 7
7

a8
7
FPower-up
A% Timer [—
Y
Instruction Oscillator
Decode & [Sr—.7 | Sta rt-up Timer '{
Control =
ower-on
Reset H
Timing |41~ Watchdog
E‘QZD Generation [~ * Timer
OSC1ICLEIM Brown-ocut —
DSC2ICLKOUT Reset

Figure 6. Instruction processing hardware of the PIC from page 12 of the data sheet.

11

Galen Sasaki, Department of Electrical Engineering, University of Hawaii

Tutorial on Breakpoints for MPLAB

In Lab 2.1, we were introduced to MPLAB and its simulator. (By the way, MPLAB is available in the HP Labs in
POST second floor, POST 208.)

To run the simulator, we used single stepping. Another technique is to use breakpoints. A breakpoint is a
location in your program, where whenever the processor is at that location, the simulator halts. At that point,
values in registers, memory, flags can be checked and discover any bugs.

In this tutorial, we will use breakpoints. Included with this tutorial is a simple program called testlab2.c.
Create a project for this program, and load the program. Assume the same configurations as in Lab 2.1.

Set a breakpoint by moving the cursor to a location where you want to set a breakpoint. Then right-click, and
select “Set Breakpoint”. Set the three breakpoints as shown in Figure 7. The breakpoints are indicated by the
red-colored “B”. Then whenever the processor gets to a breakpoint, the simulation will halt. You can resume
execution by Running the simulation.

Check all the breakpoints are enabled by selecting the Debugger menu and the Breakpoint option.

Build (or rebuild) the project. Reset and then run. If you get an error, you probably didn’t set the breakpoint
at a proper location. Choose a line that has an instruction. Other locations may work too.

Keep running the simulation until it goes through the if-statement a few times. You can observe how RB1
changes in the Simulator Logic Analyzer (from the View menu) as shown in Figure 8. (Don’t forget to select
RB1 as a channel in your Logic Analyzer.) You can keep track of how much time has elapsed with the Stop
Watch under the Debugger menu.

12

Galen Sasaki, Department of Electrical Engineering, University of Hawaii

For EE 3€lL, Uniwversity of Hawaii
Luthor: . Sasaki
* B program for the MPLabk simulation tutocrial that

accompanies Lak Z_Z.
*

f#include <htec.h>

main) {
PSR = 0;
TOCS = 05
BSZ = 0;
P51 = 1;
P50 = 0;

TRISE = 4;)/ BBZ is an input, and the rest of PORTE are ocutputs
TOIF = 0; S MNote that this is kit Z of the INTCOM registter. You
fFf can wview this in MPLAB 5IM by viewing INTCOHN
TMRO = Z56-8;
while{l} |
if (TOIE) |
THMRO = Z5E-E;
TOIF = 0O;
EBL = 1;

BBl = 0;

P 5% end of while */

Figure 7. Breakpoints in MPLAB Debugger.

Trigger Position Trigger PC = Time Baze Mode

Start @ Center) End () Maw Clear Cyc - Simple Channels
I+ o al&) ES[= =]y

RET

T
0o 50.0 100.0 180.0 200.0

Figure 8. Logic Analyzer.
13

