# **EE 361 Digital Systems and Computer Design**

Credits: 3

Categorization of credits: Engineering topic

**Instructor's or course coordinator:** Galen Sasaki, Jan. 9, 2021.

**Designation**: Required for Computer Engineering, and Elective for Electrical Engineering

#### **Text Book and Other Required Materials:**

• "Computer Organization and Design: The Hardware/Software Interface" by Patterson and Hennessey.

• "Logic Design and Verification Using SystemVerilog, Revised" by Donald Thomas.

Catalog Description: <u>EE 361 Digital Systems and Computer Design (3)</u> Design methodology, processor design, control design, memory organization, system organization. Pre: 160 and 260, or consent.

**Pre-and Co-requisites:** Pre-requisites: EE 160 "Programming for Engineers" and EE 260 "Introduction to Digital Design".

Class/Lab Schedule: 3 lecture hours per week

### **Topics Covered:**

- Principles of instruction set design, the role of compiler and optimizations, assembly language, machine level programs, how high level programs are implemented with machine instructions (10 hours)
- Review of digital circuits, elementary design methods, and hardware description language (HDL) (3 hours)
- Processor data path design (6 hours)
- Processor controller design (3 hours)
- Algorithms and circuits for integer arithmetic, and the arithmetic logic unit (ALU) (6 hours)
- Data representations: review of representing characters and integers (1 hour)
- Floating point representation and arithmetic (2 hours)
- Memory system design, implementing memory cells with transistors, RAM, memory hierarchy, caches (4 hours)
- I/O systems (2 hours)

#### **Course Objectives and Their Relationship to Program Objectives:**

A student should understand (i) computer organization, (ii) the principles of designing efficient computers, and (iii) the relationship between programs (software) and the hardware they run on. A student should be able to design efficient and complex digital systems, such as a RISC single-cycle, multi-cycle, and pipelined processors, computer arithmetic circuits, and control circuits. In addition, a student should master modern design methods for digital circuits, including appropriate computer-aided design (CAD) tools.

## **Program Objectives this course addresses:** 1, 2, 3, 4, 5.

## **Course Outcomes and Their Relationship to Program Outcomes:**

The following are the course outcomes and the subset of Program Outcomes (numbered 1-8 in square braces "[]") they address:

- Design assembly language programs from simple programs written in a high-level language. [1,2]
- Design assembly language functions that can be called by programs written in a high-level language. [1,2]
- Translate assembly language programs into machine language programs. [1,2]
- Design simple I/O drivers. [1,2]
- Understand the relationship between programs and the computer hardware they run on. [1]
- Understand how data is represented in computers [1,8]
- Understand algorithms for arithmetic and be able to design arithmetic circuits. [1,2,8]
- Design a data path for a computer. [1,2]
- Design a controller for a computer. [1,2]
- Understand pipelined computer architecture and dealing with data and control hazards [1,2]
- Learn to use a hardware description language (HDL) to design complex circuits at the behavioral level [1,2,7].
- Learn to use an HDL functional simulation to verify and debug designs [7]
- Implement a computer using an HDL. [1,2,8]
- Understand memory hierarchy and the algorithms. [1,8]
- Use tools for assembly language (machine level) programming such as the SPIM simulator. [1,2,7]

## **Contribution of Course to Meeting the Professional Component**

Engineering Topics: 100%

#### **Computer Usage:**

A SPIM MIPS processor simulator is used to run and debug assembly language programs.

Linux servers are used to run high-level programming language assignments.

To simulate HDL code (e.g., SystemVerilog code), functional simulators such as *EDAPlayground.com* and *Xilinx Webpack* are used.

Approximately 30% of the assignments use computers.

#### **Design Credits and Features:**

EE 361 has 1 design credit. About 10% of the homework assignments are writing programs or fragments of programs in assembly or machine language. About another 20% are circuit design problems, which includes a 4-week task of implementing a single cycle processor using a hardware description language (HDL) such as SystemVerilog.