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1.  Introduction 
 
This is an introduction to verilog, which is a hardware description language (HDL) for digital circuits.  
Section 2 describes how to design circuits in verilog.  Section 3 has a brief overview of simulators and 
test benching.  An example of designing and debugging a circuit using veriwell is presented in Chapter 
4. 
 
2  Verilog 
 
Verilog can be used to describe combinational and sequential circuits.  Verilog code   
 

• Can be used to simulate circuits using a simulator such as veriwell or Modelsim, or  
• Can be converted into an actual hardware design using a synthesizer such as the one in Xilinx’s 

Webpack. 
 
In verilog, circuits can be defined as modules.  A template of a module is shown in Figure 2.1.  Stick to 
this template to minimize mistakes.   Later, when you gain more experience, you can use other styles 
and conventions of writing verilog code. 
 
The circuit modules are composed of combinational subcircuits, sequential subcircuits, or a mixture.  In 
Subsection 2.1 we describe combinational subcircuits, and in Subsection 2.2 we describe sequential 
subcircuits.    
 
2.1  Combinational circuits 
 
A combinational circuit has a set of inputs (x1, x2, ..., xk) and a set of outputs (y1, y2,..., ym).  Each 
output essentially behaves like the output from a mathematical function, e.g., y = f(x1, x2, ..., xk).  This 
can be modeled within a verilog module by using a continuous assign or procedural always. 
 
Continuous assign has the following form: 
 
assign  y = expression with terms for x1, x2, ..., xk; 
 
The variable y must be a wire variable, and “expression” is a mathematical expression, e.g., a boolean or 
arithmetic expression.  The expression cannot have begin-end blocks, case statements, if-else statements 
or anything else.  The variables x1, x2, ..., xk can be wire or reg variables. 
 
The operations are on values with the same number of bits.  For example, suppose y is 3 bits (e.g., you 
declared wire [2:0] y;) and variable x1 is a single bit.  Then  
 
assign y = x;  
 
does not make sense because you are assigning a 1-bit value into a 3-bit variable.   
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// Module and port list.  Note that by convention the output ports 
// come first, then clock inputs and resets, then input ports. 
module name_of_module(output_port1, clk1, input_port1, input_port2,...) 
 
// List of ports.  Note that the ports act as wires, but you can make 
// an output port be a reg variable by declaring it so. 
input in_port1; 
input in_port2; 
input clk1; // clock input 
output out_port1; 
 
// Declare wire and reg variables 
wire [3:0] x; 
reg y; 
 
// Note that the declaration of port type and variables are 
// done at the top of the module.  The rest of the module defines 
// how the circuit behaves.  This is done by the "assign", "always", 
// and module instantiations.  These can be listed in any order 
//------------------------------------------------------------------- 
// Continuous assign:  left side of "=" is a wire var.  Right 
//  side is a boolean or arithmetic expression. 
assign x = x + ({y,y,y,y} & 3); // Note that the processing is on 4-bits 
 
// Procedural always for combinational circuits.  All assignments 
// should be blocking ("=") 
always @(variable1 or variable2 or variable3) 
   begin 
   case statements 
   blocking assignments 
   if-else 
   end 
 
// Procedural always for sequential circuits.  All assignments 
// should be nonblocking ("<=") 
always @(posedge clk1) 
   begin 
   case statements 
   nonblocking statements 
   if-else 
   end 
 
// Module instantiations.  These are for modules "Circuit1" 
// and "Circuit2".  Note that wire variables are used to connect 
// the instantiations with other things. 
Circuit1 name_of_instance(wire_var1, wire_var2,...); 
Circuit2 name_of_instance2(wire_varx, wire_vary,...); 
 
endmodule 
 

Figure 2.1.  Verilog module template. 
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Continuous assignment statements are limited to modeling simple circuits.  Often they are just used to 
connect one variable to another, e.g., 
 
assign y = x; 
 
Procedural-always statements can model any combinational circuit, so they are used more often.  A 
procedural-always has the following form: 
 
always @(x1 or x2 or ... or xk) 
 
 
 
 
 
The basic form is to have all the inputs listed in the sensitivity list, e.g.,   “x1 or x2 or ... or 
xk”.  Whenever one or more of the input values change, the output values are updated.  In this case, the 
output is y.  The output variables are always reg variables.   
 
The following are two examples. 
 
always @(x1 or x2)  y = x1 + x2; 
 
 
always @(x1 or x2 or select) 
   case(select) 
      0: y = x1 + x2; 
      1: y = x1 – x2; 
   endcase 
 
In many cases, more than one line will be needed to describe how the output y is updated.  To group 
multiple lines into a single entity, you can bind them into a begin-end block.  This is similar to curly 
brackets "{ }" used in the C programming language. 
 
always @(x1 or x2 or x3) 
     begin 
     if (x1 >= 0) choice = x1 + 3; 
     else choice = x2; 
     case (choice) 
       0: y = x2 + x3; 
       1: y = x2 – x3; 
     endcase 
     end 
 
The begin-end block explains how the new value of output y is determined.  Note that we have a 
variable “choice” that is not an input or output.  We will discuss this variable later. 
 
It is assumed that within the begin-end block, the lines are “executed” starting from the top and proceed 
downwards.  Thus, it is interpreted as if it were part of a C program.  For the example, to determine the 
new value of y, start with the if-else.  Then continue by considering the case-statement. 
 

A description of how the output variable y is updated  
whenever the inputs change.  In other words, it describes 
y = f(x1,x2,....,xk) 
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Your procedural-always should lead to the truth table for the subcircuit.  Consider the next example 
(assume all the variables are 1-bit): 
 
always @(x1 or x2 or s) 
   begin 
   if (s == 1) h = 0; 
   else h = 1; 
   case(h) 
      0:  y = x1|x2; // AND the inputs 
      1:  y = x1&x2; // OR the inputs 
   endcase 
   end 
 
This procedural-always describes a combinational circuit that has a select input “s”.  If s = 1 then the 
output y = x1 | x2.  Otherwise, y = x1 & x2.  This leads to the following truth table: 
 
   Input         Output 
 s   x1  x2          y 
 0    0    0          0    
 0    0    1          1 
 0    1    0          1 
 0    1    1          1 
 1    0    0          0 
 1    0    1          0 
 1    1    0          0 
 1    1    1          1 
 
If you cannot generate a truth table then obviously the procedural-always does not describe a 
combinational circuit. 
 
Here are some rules in regards to writing a procedural-always: 
 
Rule 1. Variables on the left side of an equality “=” must be reg variables.  For example, the variable 
“t” in the line “t = x1 + x2;” must be a reg variable. 
 
Rule 2.  There are three kinds of variables.  There are input variables such as x1, x2, and s; and there 
are output variables such as y.  There can be other variables that are not inputs or outputs, e.g., in the 
examples above, “choice” and “h” are not inputs or outputs.  They are used to store intermediate 
values as we proceed to determine the output values.  You can think of them as “wires” that are internal 
to the subcircuit.  We will refer to them as “intermediate variables”.  These variables should be reg 
variables. 
 
As much as possible, in a procedural-always, “update” output and intermediate variables at most once.  
For example, we want to avoid procedural-always such as the following: 
 
always @(x1 or x2) 
   begin 
   y = x1 + x2; 
   if (y > 4) y = x1; 
   else y = x2; 
   end 
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Here, the output variable y could get updated two times, at y = x1+x2 and at y = x1.  If these variables 
represent “wires” then it doesn’t make sense to have them change values twice each time the inputs 
change.  A better implementation is as follows: 
 
always @(x1 or x2) 
   begin 
   r = x1 + x2; 
   if (r > 4) y = x1; 
   else y = x2 
   end 
 
Then both r and y are updated once (y is updated as either y = x1 or y = x2, but is never updated twice). 
 
Rule 3.  Within a begin-end block, you can have ordinary assignments (e.g., “y = x1+x2;), if-else 
statements, and case statements.   
 
A common mistake is to interpret modules as “C functions”.  Modules are really descriptions of circuits.  
Thus, any instantiations of a module is just implying that a circuit should be placed there.  On the other 
hand, for a procedural-always, the begin-end block is an explanation of how an output value is 
computed.  Hence, it doesn’t make sense to instantiate a circuit module within a procedural-always. 
 
2.2  Sequential circuits 
 
A sequential circuit has a clock input, data inputs, and outputs.  It also has a “state” which is stored in a 
“state register”.  Note that the state register can be as simple as a few D flip flops or as complicated and 
large as a combination of RAM, register files, and counters.  When designing a verilog subcircuit, the 
state register is represented by a reg variable.  The following is an example of a procedural-always that 
implements a sequential subcircuit 
 
always @(posedge clock) q <= d; 
 
The variable “clock” is the clock input.  The procedural-always will update whenever “clock” has a 
positive edge.  The update is “q <= d”.  Here, “q” is the state register that has its value updated by input 
“d”.  This example is for a D flip flop.  Notice that instead of  “=” we use “<=”.  The assignment “=” is 
called a blocking assignment, and “<=” is called a nonblocking assignment.  These will be explained a 
little later. 
 
Consider the next example for a T flip flop. 
 
always @(posedge clock) 
   begin 
   if (t==1) q <= ~q; 
   end 
 
The example shows that we can use begin-end blocks and if-else.  You can also use case statements.   
 
Basically, a procedural-always for a sequential circuit has the following form. 
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always @(posedge clock) 
    
 
 
 
Note that when updating the state registers, we want to update all the registers at once, i.e., all their D 
flip flops get updated on the positive clock edge.  This models the way real sequential circuits work.   To 
get this effect, nonblocking assignments are used.  Next is an explanation of the difference between 
blocking and nonblocking assignments. 
 
In the case of nonblocking assignments ("<="), all the assignments are activated at once.  It is 
"nonblocking" because the statements are executed simultaneously.  Consider the following example 
with D flip flops labeled A, B, and C. 
 
 
 
 
 
 
 
When the positive edge of the clock occurs, all D flops are updated.  The following procedural-always 
models this 
 
always @(posedge clock) 
   begin 
   A <= 0; 
   B <= A; 
   C <= B; 
   end 
 
Again, all of the updates are done simultaneously.  For example, suppose initially A = 1, B = 0, and C = 
1.  Then after the positive clock edge, A = 0, B = 1, and C = 0, such as shown below. 
 
 
 
 
 
 
 
 
Blocking assignments ( “=”) are different which is illustrated in the next example. 
 
always @(posedge clock) 
   begin 
   A = 0; 
   B = A; 
   C = B; 
   end 
 
In this case, when there is a positive clock edge, each line is activated one at a time.  In other words, “A 
= 0” is updated, then “B = A” is updated and finally “C = B” is updated.  Note that the line “A = 0” 
essentially “blocks” the assignments below it.  In other words, line “A = 0” must be updated before we 

Update state registers using nonblocking 
assignments “<=”. 
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consider “B = A” and “C = B”.  In turn, line “B = A” blocks “C = B”.  This is not how a sequential 
circuit behaves.    
 
Let us take a look at the two examples below of updating our D flip flops.  Assume initially that (A,B,C) 
= (1,1,1).  If the assignments are nonblocking then, after the positive clock edge, we have (A,B,C) = 
(0,1,1).  This is what we want since all the D flip flops should be updated together.  On the other hand if 
the assignments are blocking then, after the positive clock edge, we have (A,B,C) = (0,0,0). 
 
 
 
 
 
 
 
 
 
The following are some rules to design sequential subcircuits using procedural always. 
 
Rule 1.  Always use nonblocking assignments “<=” and never use blocking assignments “=”. 
 
Comment:  Procedural always can be used to model combinational circuits or sequential circuits.  In the 
case of combinational circuits, always use blocking assignments “=”.  In the case of sequential circuits, 
always use nonblocking assignments “<=”.  Never mix the two in a procedural-always. 
 
Rule 2.  State registers are reg variables. 
 
Rule 3.  There are three types of variables: clock variable, input data variables, and state variables.  Your 
output should equal the state, so there is no need for output variables.  The clock variable should appear 
only once within “always @(posedge clock)”.  For each nonblocking assignment, the left hand side 
should be a state variable. 
 
Rule 4.  Each state variable should be updated at most once.   
 
Rule 5.  You can use if-else and case statements. 
 
For the rest of this section we will give an example of a sequential circuit.  It is a 2 bit counter with a 
two bit select “s”.  If s = 0 then the counter resets to 0.  If s = 1 then the counter counts up, and if s = 2 
then the counter counts down.  If s = 3 then the counter holds its value. 
 
 
 
 
 

begin 
A <= 0; 
B <= A; 
C <= B; 
end 

begin
A = 0; 
B = A; 
C = B; 
end 
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module counter2(q,clock,s,d) 
out [1:0] q; // 2-bit output 
in  clock; 
s   [1:0] s; // Select input 
in  [1:0] d; // Parallel load input 
 
reg [1:0] q;  // This is our state variable 
 
always @(posedge clock) 
   begin 
   case (s) 
      0: q<=0; 
      1: q<=q+1; // Counting up.  Note that the count wraps around 
                 //    when it goes past the value 3 
      2: q<=q-1; // Counting down.  Also has wrap around 
      3: q<=q;   // 
   endcase       // Actually, the begin-end is unnecessary 
   end 
endmodule 
 
Suppose we want to modify the counter so that it counts in the Gray code (which is used in K maps).  
Recall that the Gray code is 00, 01, 11, 10, rather than 00, 01, 10, 11.    
 
We can modify counter2 by having it output differently.  When counting up, the new counter should 
count 00, 01, 11, 10, 00...., and when counting down, it should count 00, 10, 11, 01, 00....  Instead of 
having the output value be the same as the state of counter2, have it be different values but dependent on 
the state.  In particular, if the state = 2, the output should be 11, and if the state = 3, the output should be 
10.  We build a separate combinational subcircuit using another procedural-always.   
 
module counterGray(y,clock,d,s) 
out [1:0] y; // 2-bit output 
in  clock; 
in  [1:0] d; // Parallel load input 
s   [1:0] s; // Select input 
reg [1:0] q;  // This is our state variable 
 
always @(posedge clock) // This is the same as before 
   begin 
   case (s) 
      0: q<=0; 
      1: q<=q+1; // Counting up.  Note that the count wraps around 
                //    when it goes past the value 3 
      2: q<=q-1; // Counting down.  Also has wrap around 
      3: q<=q;   // 
   endcase      // Actually, the begin-end is unnecessary 
   end 
 
// This is added to output the Gray code.   It’s a combinational circuit, 
// with the state being the input, and y being the output. 
always @(q) 
   case (q) 
     0:  y = 0; 
     1:  y = 1; 
     2:  y = 3; // which is 11 in binary 
     3:  y = 2; // which is 10 in binary 
   endcase 
endmodule 
 
2.3.  Bucknell Verilog Handbook 
 
In the following table is a list of sections to review in the Bucknell Verilog Handbook.  (Note that the 
Bucknell Verilog Handbook is a bit confusing because it explains verilog in the context of both circuit 
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design and simulation and mixes them together.  Actually, verilog used to design circuits is a little 
different than verilog used for simulation.) 

 
 

Section Comments 
2.2.  Lexical conventions It explains basic syntax including how to specify constants in 

binary, hexadecimal, etc. 
2.3.  Program structure It explains the basic structure of modules. 
2.4.  Data types, but skip 
Subsection 2.4.2. 

It explains variables, variables that are arrays of bits (e.g., reg 
[7:0] A;), the concatenation operation (e.g., "{x, y, z}"), and the 
repetition operation.  These help in writing concise modules. 

2.5  Operators. The operators are similar to C language operators.  Note that the 
shifting operations are "<<" and ">>". 

2.6 Control Constructs but 
skip Subsection 2.6.2. 

It explains if and case statements. 

2.7 Other statements but skip 
Subsections 2.7.1. 

It explains continuous assignment, blocking, and nonblocking 
assignments. 
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3  Simulation and Testbenches  
 
After you build modules, you'd like to test them using a verilog simulator such as veriwell.  The 
software tool veriwell is known as a discrete time simulator.  It will simulate a circuit (specified in 
verilog) over a time period starting from time 0.  The simulator will divide time into time units or time 
steps.  You can think of each unit as the "tick" of some clock.  Each time unit corresponds to some small 
duration such as 1 nanosecond or 0.1 nanoseconds.   
 
To run a simulator, you first initialize it so that it starts from time 0.  The simulator keeps track of the 
time by a variable, and in the case of veriwell the variable is $time.  When the simulator runs a 
simulation, it computes what the wire and register values should be as time goes on.  In particular, it 
determines what the variables should be at time 1 based upon what the variables were at time 0.  Then it 
determines what the variables should be at time 2 based upon the variables are at time 1.  It continues in 
this way until it reaches some stopping time.  In the case of veriwell, $stop determines the stopping 
time. 
 
What can you do with the simulator?  You can test your verilog modules as if you were testing a real 
hardware circuit such as an IC chip.  Figure 3.1 shows a set-up to test the IC chip.  The chip is on a 
protoboard.  Its outputs are connected to probes, which are LEDs.  A clock generator is connected to the 
clock input.  The other inputs are connected to wires that can be set to 5v and Gnd.  To check whether 
the chip works or not, we can set the input wires to different voltages and observe the probes.  If the 
outputs are what we expect then the chip works.  This set-up is a test bench.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can also test bench our verilog modules.  The following are verilog statements that are useful for test 
benching. Look these up in the Bucknell Verilog Handbook and read the descriptions. 
 

Verilog Statements What are they used for 
initial This statement is used to initialize variables for simulation.  However, with 

delays, this statement can be used to generate input signals that change over 
time. 

#n This inserts a delay of n time units.  This is used in combination with 
initial to create input signals for your test bench. 

$display This is used to display variable values, like probes.  This is similar to 
printf in the C language. 

$monitor This is also used to display variable values, like probes.  This is similar to 
$display but it can occur only once in the verilog code.  This can occur 
only once in your verilog code, while $display can occur many times. 

 

Protoboard 

5V Gnd 
Clock 

Generator 

IC Chip

LEDs 
(probes)

Figure 3.1.  A testbench
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Figure 3.2 is a test bench for a module called icChip which is a sequential circuit.  The test bench is used 
for simulations only.  You do not synthesize a test bench because it is not a circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// Note that the test bench module is similar to main( ) in C programs.  
// It has no ports.  Also note the test bench can  
// have any name, and in this case it's called "testbench" 
module testbench; 
 
// We need variables to connect to inputs and outputs of icChip.   
// Note that signals to the inputs of icChip must be from reg variables. 
// The outputs from icChip are connected to 
// wire variables. 
reg clock; 
reg [1:0] A; 
reg [2:0] B; 
wire [2:0] C; 
 
// The following is the instantiation of icChip.  Note  
// that the wire and reg variables are connected to it. 
icChip  c1(A,B,C,clock); 
 
// The following is the clock generator.  It's initialized 
// to 0 and then it toggles every time unit.  Thus, the 
// clock period is 2 time units. 
init clock = 0; 
always #1 clock = ~clock; 
 
// The following shows how to set inputs to different 
// values over time.  Note that the assignments are blocking 
// so that they are executed in sequence. 
init 
 begin:  Input values for testing 
 A = 0; 
 B = 0; 
 #2  A = 1; // After 2 time units, A is changed to 1. 
 #1 
 B = 3; // After another time unit, B changes to 3. 
 #2 $stop; // After 2 more time units, the simulation 
   //   stops. 
 end 
 
// The following displays the outputs. 
init 
 begin:  Display 
 // The following is displayed once at time 0 of the  
 // simulation. 
 $display("A   B   C   clock time"); 
 // The following will display whenever one of the 
 // variables changes values. 
 $monitor("%d %d %d %d %d",A,B,C,clock,$time); 
 // Note that $monitor can occur at most once in verilog code 
 // while $display can occur many times. 
 end 
 
endmodule 
 

Figure 3.2.  Example of a test bench. 
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4  Example  
 
Creating and testing a 2:1 multiplexer.  Figure 4.1a shows the veriwell window at start up. We want to 
create a module for the 2:1 multiplexer and store it in a file called "mux2to1.V"  Notice that verilog files 
should have the ".V" suffix.  To begin, go to the file menu and select New.  This creates a text file 
Noname1.v.  Now, type in the module.  A screen shot is shown in Figure 4.1b.  Save it with the file 
name "mux2to1.V".  Create a testbench file and call it testbench_mux.V.  Type in a testbench such as in 
Figure 4.1.c. 
 
Now that we have both the module and testbench, we can create a project.  Go to the Project menu and 
select New.  Next, select Project menu again and "add "mux2to1.V" and "testbench_mux.V".  After 
adding the files, the window should look Figure 4.1d.  Now you can simulate by going to Project menu 
again and selecting Run.  There was a compile error in "mux2to1.V" (colon following "begin" on line 15 
should be deleted).  After fixing the error, the project was run again.  It compiled successfully with two 
"warnings".   This is shown in Figure 4.1e.  Then you can run the simulation by clicking the arrow 
button shown in Figure 4.1e.  Figure 4.1f shows the result of the simulation.  
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Click here 
to expand 
window 

Figure 4.1a.  Veriwell console. 

Figure 4.1b.  2:1 multiplexer module, "mux2to1.V"
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Figure 4.1c.  "testbench_mux.V" 

Figure 4.1d.  Adding "mux2to1.V" and "testbench_mux.V" to a project. 

If you click a line, 
you open the file so 
that you can edit it. 
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Figure 4.1e.  Running the project, which leads to "compiling" the project. 

Figure 4.1f.  Running the simulation. 

After compiling, click 
here to run the 

simulation. 
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Notice that in Figure 4.1f, the output was not spaced nicely.  The output should have looked like this 
 
time in0 in1 sel y 
0 3 15 0 3 
1 3 15 1 15 
2 3 21 1 21 
3 15 21 1 21 
 
You can check that the output y is equal to the input (in0 or in1) depending on the value of sel.  Thus, 
the multiplexer works for this test bench. 
 


