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Overview of the PIC 16F648A Processor: Part 1
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Abstract: This report is the first of a three part series that discusses the features of the PIC 16F684A
processor, which is from Microchip (www.microchip.com). The reports will refer to the data sheet of the
processor. Each report takes about 30-60 minutes to read (this report will take 60 minutes).

In this report, we review the basics of computer organization and technologies, and then cover some of the
basic features of the processor. We also present a simple application of the processor to illustrate concepts.
Finally, we will discuss bit-wise logic operations which are used in this and subsequent assignments.
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1 Introduction to Computers and Computer Terminology

The processor is a 18-pin computer in a chip with a

e Central processing unit (CPU): which runs the program, a collection of instructions that does some task.
e Memory: which stores the program and holds variable values
e Input/output (I0): which is how the chip interacts with the rest of the world.

1.1 Programs

A program can be written using a high level language like C, such as in Figure 1.1.

for (i=0; i<10; i++) n = n*(n+l);

Figure 1.1. Simple C language program.

a3
|

This program has C language instructions such as “for” and “return”; variables such as and “n”; and data

constants such as “10” and “0”. Note that variables can be read and written to.

However, the processor cannot run this program since it can only execute simpler instructions called machine
instructions.  Rather, the “high-level” C program must be compiled to create a machine program (or
executable code or machine code), which is composed of machine instructions and can be executed by the
processor. The machine instructions are from a machine language. For example, Intel processors follow the
x86 machine language. The PIC has a different machine language with 35 instructions.

A Clanguage compiler (such as cc or gcc) is software that reads a C program, and then converts it to a machine
program, composed of machine instructions. A C program is sometimes referred to as a source code because
it can be compiled by different compilers, that are specific to different “target” processors. This will result in
different machine programs.

Machine instructions are strings of bits, which are difficult to read by humans. Assembly language is another
way to write machine programs that can be read by humans. In assembly language, each machine instruction
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has a mneumonic, which is a representation of an instruction that is easier to read. As an example, the PIC
machine instruction 00000011000001 has the mneumonic CLRF 1. This instruction clears a variable “1”. Note
that the mneumonic CLRF 1 is easier to read than the machine instruction 00000011000001. Assembly
language programs are written in text, and they need to be assembled, which is the process of converting an
assembly language program to an executable program. Assemblers are software that does the assembling.

1.2 Memory

Programs and their variables are stored in the memory of the processor. Programs are stored in instruction
memory or program memory, while variables and their data are stored in data memory.

There are different types of memory technologies:

e Read only memory (ROM) can be read but not written to. Some ROM technologies can be written to
(or programmed) only once, at the factory.

e Programmable ROMs (PROMs) can be programmed by the user. Many PROM technologies allow
reprogramming, though the reprogramming is relatively slow.

e Erasable PROMs (EPROMS) can be erased by ultra violet light and then reprogrammed. You may have
used EPROMS in EE 260.

e Electrically erasable PROMs (EEPROMs) are erasable using electricity. They are more convenient to
reprogram since they do not require ultra violet light. A special type of EEPROM is flash memory, used
in thumb drives.

e Random access memory (RAM) can be read and written to.

PROMs are known as non-volatile memory since the circuit can be turned off and the data is still retained.
RAM is referred to as volatile memory since when turned off, all the data is lost.

2 Processor Data Sheet

The PIC 16F684A has a data sheet. Page 3 of the data sheet has a list of the PIC’s features. The following are
some of these features:

e 35single-word instructions

e Interrupt capability

e 18 pin dual-in line package

e Internal and external oscillator options

e Power-saving Sleep mode

e Watchdog Timer with independent oscillator for reliable operation
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e In-Circuit Serial Programming (ICSP)
e Power-on Reset
e \Wide operating voltage range (2.0v - 5.5v)

High-Performance RISC CPU: Low-Power Features:
+ Operating speeds from DC — 20 MHz + Standby Current:
= Interrupt capability - 100 nA @ 2.0V, typical
+ B-level deep hardware stack + Operating Current:
. Direct, Indirect and Relative Addressing modes - 12 uA @ 32 kHz, 2.0V, typical
. 35 single-word instructions: - 120 pA @ 1 MHz, 2.0V, typical
- All instructions single cycle except branches = Watchdog Timer Current:
- 1 pA @ 2.0V, typical
Special Microcontroller Features: . Timer! Oscillator Current:
» Internal and external oscillator options: - 1.2pA @ 32 kHz, 2.0V, typical
- Precision intemal 4 MHz oscillator factory » Dual-speed Intemnal Oscillator:
calibrated to +1% - Run-time selectable between 4 MHz and
- Low-power internal 48 kHz oscillator 48 kHz
- External Oscillator support for crystals and - 4 ps wake-up from Sleep, 3.0V, typical
resonators e

Figure 2.1. Snapshot of a portion of page 3 of the datasheet.

Page 4 of the datasheet has the pin diagram as shown in Figure 2.2. Note that many of the pins have multiple
names. For example, Pin 2 has the label RA3/AN3/CMP1, which means it has one of four possible functions.
RA3 is an 10 port, AN3 is an input for a analog comparator, and CMP1 is an output for comparator. A
programmer can choose one of the three functions through the source code. An explanation of these pins is
given on pages 13-14. A portion of pages 13 and 14 is shown in Figure 2.3. We will only have time to cover a
subset of these functions.
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Figure 2.2. Pin diagram of the PIC from the data sheet.

TABLE 3-2: PIC16FB27A/628A/648A PINOUT DESCRIPTION
Name Function | Input Type | Qutput Type Description

RAD/AND RAD ST CMOS Bidirectional /O port
AND AN — Analog comparator input

RAT/AN1 RA1 ST CMOS Bidirectional /O port
AN1 AN — Analog comparator input

RAZ/ANZNREF RAZ ST CMOS Bidirectional /O port
ANZ AN — Analog comparator input
VREF — AN WVREF output

RA3/ANI/CMP1 RAZ ST CMOS Bidirectional /O port
AN3 AN — Analog comparator input
CMP1 — CMOS Comparator 1 output

Page 12 of the data sheet has a schematic diagram of the processor as shown in Figure 2.4. The top of the
page shows 4096 x 14 of flash memory, which is used as program memory.
bits, and there can be 4096 instructions. There is also 256 bytes of RAM. Each data is 1 byte, and there are
256 memory cells. These cells can be used for variables. For example, in Figure 1 the dummy variable
the for-loop can be implemented in RAM. Thus, the program memory is used to store instructions (which are

Figure 2.3. A portion of pages 13 and 14 from the data sheet.

referred to as operations) and RAM is used to store data (which are referred to as operands).

Each machine instruction is 14
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The 8-level stack is used to implement functions. We will discuss stacks in the EE 361 lecture later in the
semester. There is a program counter (PC) which is used to keep track of which instruction the PIC is currently
processing.

13 Data Bus 8_
Program Counter =
Flash |
Program kv
Memory RAM
8-Level Stack File
(13-bit) Registers
Program
Bus RAM Addr (1) ﬁ 3 PORTA
7 .
; / Addr MUK - RADAND
Instruct
nstcton Reg FAT | FRATIANT
| Direct Addr 7 | gl | w15 RAZIAN2NReF
7 i S [ »[5| RABIANIICMPA
RAAMTOCKI/CMPZ
RASMCLRN po
- RAGIOSCHCLKOUT
8 | RATIOSCUCLKIN
7 1] J
Powsr-up 3 ML PORTB
r Timer —[ REBOIMT
Inbt":rcﬁnn Oscillator 3‘ d ~L RETRAUDT
D;mde & = | Start-up Timer h, \ELL{ V4 = x| REB2THICK
Control — - REMCCP1
Pawer-on . RB4/PGM
J
— Eae ~[<|RB5
Iming |+« | Watchdog W R +[¢| REGIT10SOMICKIIPGC
Bd<=A ceneration [<— Timer °S = [%| RETIT10SIPGD
OSCACLEIN Brown-out
OSC2CLKOUT Reset
Low-\oltage
Programming
MCLR ‘oo, Vss
Comparator TimerD Timer1 Timer2
) F
| i it
| [ £
i LY I
VREF CCP1 USART Data EEPROM

Note 1:  Higher order bits are from the Status register.
Figure 2.4. Block diagram of the PIC from the data sheet.
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On the right side of the diagram are PORTA and PORTB. These are I/O ports used to connect the processor
with the outside world.

In the middle of the diagram is a block of components: Power-up Timer, Oscillator Start-up Timer, Power-on
Reset, Watchdog Timer, and Brown-out Reset. These components deal with resetting the processor. For
example, the Brown-out Reset deals the following situation. When the source voltage to the processor is too
low, e.g., instead at full 5v the power temporarily goes to say 1.8v, the processor’s circuits may not behave
properly. As a result, the processor will not behave correctly even when full power is restored. The Brown-
out Reset will detect this low power situation and automatically reset the processor so it is runs properly
again.

To the left of Figure 2.4 are the Timer Generation and Internal Timing Block which are the sources of the clock
signal for the processor. The PIC like all processors is a synchronous digital circuit and operates on a clock
signal. The PIC has multiple options for clock signals. It can use an internally generated clock signal or an
external source. The internal signal is convenient but less accurate. An external signal can be generated using
a crystal. For this lab, we will use an oscillator crystal as shown in Figure 2.5.

B

Figure 2.5. Oscillator crystals.

At the bottom of Figure 2.4 are timer components. These are basically counter circuits, similar to the 74163
circuits from EE 260. We will use one of these in a lab assighment.

Also at the bottom is an EEPROM which is nonvolatile memory used to store data. Note that this is different
than program memory which stores machine instructions. There are also an analog comparator circuits and a
USART. We will ignore these for EE 361L.

3 Example Application

In the next subsection, we will discuss a simple example application which has the processor drive an LED so
that it blinks periodically. The application uses 10 ports. The program of the application is written in C
language but there is also an assembly language portion. In Subsection 3.2, we will explain some of the
assembly language instructions.
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3.1 Blinking LED Program

The following program called the “Blinking LED program” is a simple example that has 10. It assumes that an
LED is attached to pin RA1, and it turns the LED on and off. The RA1 pin is part of the 8-bit wide PORTA. The
bits of PORTA are RA7, RA6,..., RAO. PORTA can be treated as a variable in software.

main( ) // BLINKING LED program

{

// Set PORTA so that RA3 and RA2 are inputs, and RA5, RA4, RA1l, and RAO are

outputs.

TRISA = 0x04; // Prefix “0Ox” means hexadecimal. Note that “0” is a zero, not the
// alphabet “0”

while(1) { // Loop forever

PORTA = 0x00; // Output O to RAl
PORTA = 0x02; // Output 1 to RAl
by

}

PORTA is bidirectional which means its bits can be configured to be inputs or outputs. These bits can be
configured in software by another variable TRISA. Setting a bit in TRISA to 0 will make the corresponding bit in
PORTA an output. Setting the bit to 1 will make the bit an input.

The Blinking LED program sets RA1 to be an output, which is done in the instruction TRISA = 0x04. The
number “0x04” is a hexadecimal number, where “Ox” prefix indicates hexadecimal. The base in hexadecimal
numbers is 16, and each digit represents a value from 0 to 15. The digitsare 0, 1, 2, ..., 9, A, B, ..., F, where the
digits A = 10, B = 11, .., F = 15. A hexadecimal number h ,h ,..h, has value

h,,x16"" +h ,x16"%+..+h,x16°. Hexadecimal numbers are a convenient way to represent binary

numbers. Each hexadecimal digit represents four bits. For example, the hexadecimal number F5 can be
converted to binary by converting each digit to four bits. F equals 15, which in binary is 1111, and 5 equals
0101. The representation of F5 in binary is 11110101. The following table converts hexadecimal digits to
binary numbers

Hex | Binary Hex | Binary Hex | Binary Hex | Binary
0 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

The instruction TRISA = 0x04 indicates that the ports are configured using the binary string 0000 0100 (which
equals 0x04). Thus, RA2 is configured to be an input while all the other ports are configured to be outputs.
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TRISA is implemented by a hardware register. Such registers are often called control registers. To the C
compiler for the PIC, “ TRISA” and “PORTA” are variables with special names.

After the Blinking LED program configures PORTA to inputs and outputs, it goes into an infinite loop,
continually setting pin RA1 to the value 0 and then 1. There is a problem with this program. Since the
processor is running so fast, the LED will blink very quickly, too fast for humans to detect. We will just see an
LED that seems continually on. This can be solved by adding delay as shown in the next program, “Blinking
LED 2”.

main( ) // BLINKING LED 2 program

{
// Set PORTA so that RA3 and RA2 are inputs, and RA5, RA4, RA1l, and RAO are
outputs.
TRISA = 0x04; // Prefix “0Ox” means hexadecimal. Note that “0” is a zero, not the
// alphabet “0”
while(1) { // Loop forever
PORTA = 0Ox00; // Output O to RAl

delaylsec(Q); // Delay 1 second
PORTA = 0x02; // Output 1 to RAl
delaylsec(Q); // Delay 1 second

}

The Blinking LED 2 program uses a function “delaylsec”, which provides a 1 second delay. Next, we will discuss
implementing this function. The following implementation is a naive approach. It assumes a 1 MHz clock
(note that in the actual lab assignment, the clock rate may be different). The function has a for-loop that goes
through 1 million passes.

void delaylsec( ) // A delay of 1 second

n
0;
e (n < 1000000){ // 1000000 = 1 million passes of the while loop

If each pass takes one clock cycle (1 us) then the for-loop will cause 1 second of delay. However, this function
will not work for the following reasons:

e Each line of C will translate into multiple lines of machine instructions. It is difficult to estimate the
number of instructions without compiling.

e Machine instructions can take multiple clock cycles, and some instructions will take different clock
cycles depending on the situation.
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e The variable “n” is stored in a memory cell (register), and this cell has a limited size of 8 bits. Its value
ranges from -128 to +127 (using twos complement arithmetic; if you don’t know twos complement, we
will discuss this in lecture later). Thus, “n” cannot be implemented correctly in the for-loop, which
requires it to range up to 1 million.

Next, we will implement the 1 second delay using two functions. The first function “delaylsec” calls a second
function “delaylms”, that has a 1 millisecond delay. The function “delaylsec” calls “delaylms” for 1000
times.

The following is “delaylsec”. The C instruction “for” and calculations such as “n++” take clock cycles too but
but just a small percentage compared to “delaylms”.

void delaylsec( ) // A delay of 1 second
{ Int n,m;
for (n=0; n<10; n++) {
for (m=0; m<100; m++) delaylms( );
}
}

Figure 3 has the “delaylms” C function which also has assembly language instructions. The compiler for the
PIC allows a program to have a mix of C language and assembly language. By writing most of the function in
assembly language, we can control the number of clock cycles.

Figure 3.1 shows how the assembly language portion is delimited. It also explains the “DELAY_LOOP” label.
The assembly language portion is a delay loop. It is composed of the assembly language instructions CLRWDT,
NOP, DECFSZ, and GOTO. (The PIC has 35 machine instructions, which are presented in Section 15 in the data
sheet, starting from page 117.)
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Global variable declaration of “delay”. We use a
global rather than local variable for technical

int delay; #<‘ reasons, which we will not explain here.

void delaylms( )

delay=100; “DELAY_LOOP:” is a label which refers to the
E'%E‘EQY L 0OP- next instruction. In this case “CLRWDT”. Note
— - that the colon “:” as a suffix is part of the syntax.
CLRWDT
#asm and NOP
#endasm delimits NOP
assembly NOP

language portion NOP “_delay” is a reference to the global variable
NOP “delay”.
NOP

DECFSZ _delay,1

\ GOTO DELAY_LOOP
#endasm
3} The “GOTO DELAY_LOOP” instruction means to

jump to the label “DELAY_LOOP”. Thus, the
processor will jump to the instruction CLRWDT
as the next instruction to execute.

Figure 3.1. delaylms function with explanations.

Next, we will explain the machine instructions in Figure 3.1.

3.2 Description of Some PIC Machine Instructions

NOP: The simplest instruction is NOP (for “no operation), which does nothing except to use up a clock
cycle. Figure 7 shows that “NOP” is the assembly language mneumonic, and that the machine instruction is
the 14-bit string 00 0000 0xx0 0000. The figure also shows that it uses 1 clock cycle.

GOTO: The instruction GOTO has the syntax GOTO <label> . The <label> indicates the position of
another instruction. For the delaylOus( ) function, the label DELAY_LOOP corresponds to the CLRWDT
instruction. When the PIC processor executes this GOTO instruction, it will jump to the DELAY_LOOP label.

CLRWDT: The instruction CLRWDT clears the Watch Dog Timer. The timer is a module within the PIC.
Watch Dog Timers are useful for computers that need to keep running forever. These timers basically run on
their own, keeping track of how much time has elapsed. When these timers have elapsed for a pre-specified
period, they time out. This causes the computer to reset.
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Watch dog timers are often used on computers that continually run a particular task, e.g., controlling a traffic
light. Now if the computer got stuck for some reason, and there is no one to reset it, it stays stuck. To avoid
getting stuck forever, a computer can use Watch Dog Timer to automatically reset it. Then the program must
be written so that it periodically resets the timer to keep from timing out and resetting prematurely. This is
sometimes referred to as “petting the dog”. The analogy is that you must regularly pet the dog to keep it
happy. Our delay function will pet the dog every pass through the loop. Here is more information about the
Watch Dog Timer:

http://en.wikipedia.org/wiki/Watchdog_timer

A related machine instruction of CLRWDT is CLRF shown in Figure 6. Here, “F” (or “f”) is a variable. which is
realized by a hardware register. This instruction clears the variable F. CLRF has the machine instruction 00
0001 1fff ffff, where “fff ffff” is a binary number that indicates the register F. CLRWDT is a separate function
because the watch dog timer is special hardware.

DECFSZ: The final machine instruction in the delay loop is DECFSZ _delay,1. Figure 8 has a description
of DECFSZ f,d, where “f” is a variable (which holds data or operand), and “d” is a value which is either 0 or 1.
In our case, “f” is the global variable “delay”. Note that in assembly language the C variable “delay” is
“ delay”. In our case, “d” is equal to 1.

According to Figure 3.2, when the processor executes “DECFSZ _delay,1”, it first decrements the variable
“delay” by 1. Since “d” has been set to 1, the decremented value is stored back into the global variable
“delay”. Next, the processor checks the result. If the result is O (i.e., global variable “delay” is zero) then the
next instruction (GOTO) is skipped. Otherwise, the processor proceeds to execute the next instruction.

DECFSZ Decrement f, Skip if 0
Syntax: [ fabel] DECFSZ fd
Operands: 0=f=127

d = [0,1]
Operation: (T) - 1 — (destination);

skipifresult=0
Status Affected:  MNone

Description: The contents of register 'f are
decremented. If 'd’ is 0, the result
is placed in the W register. If'd' is
1, the result is placed back in
register .

If the result is 1, the next instruc-
tion is executed. If the result is 0,
then a woP is executed instead,
making it a 2Tcy instruction.

Figure 3.2. The description of DECFSZ from the data sheet, page 123.

12



Galen Sasaki, Department of Electrical Engineering, University of Hawaii

3.3 Delay Analysis of delay1ms

Figure 5 shows the function “delaylms” again with an explanation of the number of clock cycles it uses. It has
the following components:

e The Cinstruction “delay = 100” initializes the variable “delay”.
e The assembly language portion is a delay loop. Each time the delay loop is passed, the instruction

DECFSZ decrements “delay”. Thus, the loop goes through 100 passes.

The data sheet of the PIC shows the number of cycles per instruction on page 118 under “Table 15-2”. The
table is shown in Figure 3.3.
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Mnemonic, - 14-Bit Opcode Status
Description Cycles MHotes
Operands Msh LSh Affected
BYTE-ORIENTED FILE REGISTER OPERATIONS

ADLOWF fd |AddWandf 1 00 0111 dfff ££ff |CDC.Z 1.2

ANOWF fd | AND W with f 1 00 0101 dfff E£££ (2 1.2

CLEF f Clear f 1 oo 0001 1f£ff £ffEf | E 2

CLEW —_ Clear W 1 oo 0001 Omoox xxxx | &

COMF fd |Complementf 1 00 1001 dfff EE£EE (2 1.2

DECF fd |Decrementf 1 00 0011 dfff EE£EE (7 1.2

DECFSE f,d |Decrementf, Skip if D 112) D0 1011 JfEFE EEEF 1,2,3

INCF fd Increment f 1 oo 1010 dfff f£fff |Z 1.2

INCFSE f.d |Incrementf, Skip if 0 112) 00 1111 dffE fEEE 1,2,3

IORWF fd |Inclusive OR W with 1 00 0100 dEfEf EEEE (2 1.2

MOVF fd |Movef 1 00 1000 dEfEEf EEEE (2 1.2

MOVWF f Move W to f 1 00 0000 1fff EEEE

NHOP _ Mo Operation 1 oo 0000 QOO 0000

ELF f,d Rotate Left f through Carry 1 00 1101 dfff f£fff |C 1. 2

REF f,d Rotate Right f through Carry 1 00 1100 d4fff ££ff (C 1, 2

SUEWF f.d | Subtract W from f 1 00 0010 dfEE EE£ff |CDC.Z 1.2

SWAPF fd |Swap nibbles in f 1 00 1110 dfEE EEEf 1.2

X0ORWF f d Exclusive OR W with f 1 oo 0110 dfff f£fff|Z 1.2

BIT-ORIENTED FILE REGISTER OPERATIONS

ECF f b |BitClearf 1 01 00bb bEfff f£EEf 1.2

EEF fb Bit Set f 1 01 01bb bfff f£fff 1.2

RTFSC f.b |Bit Testf Skipif Clear 112) 01 10bb bEEE fEEE 3

BTFSS f, b | Bit Testf, Skipif Set 112) 01 1lbb bEEE fEEE 3

LITERAL AND CONTROL OPERATIONS

ADDLW k Add literal and W 1 11 111x kkkk kkkk |(C,DCZ

ANDLW k AMND literal with W 1 11 1001 kkkk kkkk [Z

CALL k Call subroutine 2 10 0Okkk kkkk kkkk|

CLEWDT — Clear Watchdog Timer 1 0o oooo 0110 0100 | TOPD

GOTO k Go to address 2 10 1kkk kkkk kkkk

IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk |(Z

MOVLW k Move literal to W 1 11  00xx kkkk kkkk

RETFIE — Fetumn from intermrupt 2 0o o000 0000 1001

RETLW k Fetumn with literal in W 2 11 0lxx kkkk kkkk

RETURN — Return from Subroutine 2 0o 0000 0000 1000

SLEEP — | Go inte Standby mode 1 00 0000 0110 001l | TOPD

SUELW k Subtract W from literal 1 11 110x kkkk kkkk |(CDCZ

XORLW k Exclusive OR literal with W 1 11 1010 kkkk kkkk |Z

Mote 1: When an VO register iz modified as a function of itself (e.g., MOVF PORTE,

as a NOE

1), the value used will be that value present on the
pins themselves. For example, if the data latch is '1° for a pin configured as input and is driven low by an external device, the data
will be written back with a ‘0"
2. [f thiz instruction is executed on the TMROD register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the
Timerd Module.
3:  If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed

Figure 3.3. The table from page 118 from the PIC data sheet.
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Upon entering the function, a few

int delay; // This is a global housekeeping machine instructions.

void delaylms( )

{
delay=100; .

#asm \| A few clock cycles

— DELAY_LOOP:

CLRWDT =1clockcycle
NOP =1 clock cycle
NOP =1 clock cycle
NOP =1 clock cycle
100 passes < NOP = 1 clock cycle =1 cycle, first 99 passes
NOP =1 clock cycle = 2 cycles, 100th pass
NOP =1 clock cycle |
DECFSzZz _del ay,
\_ GOTO DELAY_LOOP =1 clock cycle, first 99 passes
#endasm =0 cycles on the 100th pass

s \\I since it’s skipped

Upon exiting the function, a few
housekeeping machine instructions.

Figure 3.4. delaylms function with clock cycles.

Let us consider the delay in Figure 3.4. Each pass will execute CLRWDT once, NOP six times, DECFSZ once, and
GOTO once (though GOTO is skipped on the 100th pass). From Figure 3.3, CLRWDT, NOP, and GOTO each take
one clock cycle. DECFSZ takes one cycle for the first 99 passes but 2 cycles on the last pass.

Each pass uses 10 clock cycles. More specifically, for the first 99 passes, each pass is 10 clock cycles,
composed of CLRWDT (1 cycle), NOP (6 cycles), DECFSZ (1 cycle), and GOTO (1 cycle). The 100th pass also uses
10 clock cycles, composed of CRWDT (1 cycle), NOP (6 cycles), and DECFSZ (2 cycles).

Since there are 100 passes, the total number of clock cycles in the delay loop is (10 cycles per pass) x (1000
cycles) = 1000 clock cycles, which is a 1 millisecond delay.

This accounts for most of the clock cycles but not all. There are clock cycles to execute “delay = 100” and clock
cycles to implement housekeeping operations for the function, e.g., returning from the function call. But the
number of these cycles is small compared to 1000 clock cycles of the delay loop. Thus, we ignore them and
assume that the function has a delay of “approximately” 1 ms.
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Note that the number of NOPs in the function was determined as part of its design. The number of NOPS used
is just enough so that the function has a 1 ms delay. If we wanted more or less delay we would add or delete
NOPs.

3.4 Hardware

In this subsection, we will discuss how to configure the hardware for this application. First, we will use a
crystal oscillator. This is shown in the data sheet on page 99 as shown in Figure 3.5 below. Note that there is
a (possible) series resistor Rs, but we won’t need this. There are also two capacitors. Note that the two pins
of the processor that are used are OSC1 and OSC2, which are pins 16 and 15, respectively.

T Y IW I'l-lI-FI\nII'l-l"I'I’
| OsC1
c'ﬂﬂl |
. L7
] XTAL 'S Rpy /S Sleep
1 1
= osc2) f 1 g
RS |a— t}(_:-— Fosc
a2 -
PIC16FG62T A/G28A/G48A
Hote 1: A seres resistor may be required for AT sfrip cut
crystals.
2:  See Table 14-1 and Table 14-2 for recommended
values of C1 and C2.

Figure 3.5. Crystal oscillator configuration from the PIC data sheet.
Second, we need to connect the LED to port RA1, and this is pin 18.

Third, we need to connect VSS and VDD to Ground and 5 volts, respectively. (Actually, the processor has a
wide operating voltage range from 2.0 to 5.5 volts.) The pins for VSS and VDD are 5 and 14, respectively.

Finally, we’d like to be able to program the processor while it’s running. This is called in-circuit serial
programming (ICSP, which is a Microchip Inc trademark). Note that this is done with pins 12 and 13.

How to set up the ICSP is discussed in the MPLab Manual. It’s also shown in page 114 of the data sheet.
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4 Important Pins

Here is a list of important pins.

e PORTA (RAO - RA7) and PORTB (RBO — RB7): Bidirectional I/O ports.

e 0OSC1 and OSC2: Inputs for the crystal oscillator.

e INT: External interrupt. We'll learn more about interrupts later. Some of the pins of PORTB can also
function as interrupts.

e PGCand PGD: ICSP programming Clock and Data. Used in in-circuit programming

e VSS: Ground reference.

e VDD: Power supply.

e \MCLR: Master clear (it should have an overbar over MCLR but | couldn’t get it to work on word doc).
When configured this is an active-low Reset to the processor.

Note that, at various places, there is a reference to Schmidt triggers in the data sheet. Appendix A describes
what a Schmidt trigger is.

5 Registers

e PORTA and PORTB: Bidirectional ports RA and RB and some of the ports can be configured as
interrupts.

e TRISA and TRISB: Programming these registers with Os and 1s can configure the RA and RB ports as
outputs and inputs respectively. Its value on reset is 1s, which implies the default on the I/O ports is as
inputs.

e OPTION_REG: This is to configure ports and the timer circuit TMRO. We'll use this later. It’s default
value on Reset is to disable the functions, which is fine for now.

e [INTCON: This configures the interrupts. We’ll consider this later on another lab assignment. It's
default value on Reset is to disable the interrupts, which is fine for now.

e PIE1 and PIR1: These are configuration registers for components we won’t use so ignore.

e PCON: This is the power control register. We won’t be using this either so we’ll ignore it.

17
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6 Logic Operations

Let us review logic operations. Recall that there are three basic logic operations: AND, OR, and COMPLEMENT
(sometimes called NOT). Their truth tables are shown in Figure 6.1.

AND OR COMPLEMENT
Inputs Output Inputs Output Input  Output
00 0 00 0 0 1

01 0 01 1 1 0

10 0 10 1

11 1 11 1

Figure 6.1. Logic operation truth tables.
The C language has bit-wise logic operators: “ & ” (AND), “ | ” (OR), and “~” (COMPLEMENT)

To understand what these operators do, let us discuss an example where all operands are 6 bits. Consider the
C language instruction

m=n&5.

Let the 6 bits of m be m5, m4, ..., m0; and the 6 bits of n be n5, n4,..., n0. Also note that the decimal value 5 is
000101 in binary. The bit-wise AND operation “&” will do eight AND operations, and in particular,

m5=n5AND O
m4 =n4 AND O
m3=n3 ANDO
m2=n2AND 1
ml=n1AND1
mO0 =n0AND O
Similarly,

m=n|5;

18
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results in

m5=n50R0
m4=n4 0RO
m3=n30RO0
m2=n20R1
ml1l=n10RO0
mO0=n0OR 1

‘o~

Likewise, the bit-wise complement operation will just flip all the bits.

The logic operations can be very useful in processors. The AND operation can clear bits to 0, and the OR
operation can set bits to 1. For example, m =n & 5 results in

m = (0, 0, 0, n2, 0, n0)

Here, the binary value for 5is (00 0 1 0 1), and so bits 0 and 2 are one while the rest of the bits are zero. Note
that if you AND a bit x with zero then the result is always zero; while if you AND a bit x with one then the result
is the bit x again. Thus, the operation m = n & 5 will clear all bits except bits 0 and 2. The bit string (00010

1) is referred to a mask because it will mask out bits.

Similarly, the bit-wise OR operation “ | “ can be used to set bits to 1. Here, Os result in unchanged values,
while 1s result in bits being set to 1.

Some other useful C language operators are the bit shifting operators “<<” and “>>”, which are left and right
shifts respectively. Let us go over the left shift operation first. Consider the C language instruction

m=n<<2

This means that the value of n = ( n5, n4, ..., n0) should be shifted to the left by 2 bit positions. This results in
m = (n3, n2, n1, nO, 0, 0).

The right shift “>>” works in a similar way except the bits are shifted to the right.

Now as a review, we will give some examples that combine all of the operations above. Consider the C
language instructions

d=1<<3;
m=m| d;
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The first line ” d = 1 << 3” will shift the value “1” to the left by 3 bit positions. Recall that “1” in binary is
00000001. Shifting this to the left by 3 bit positions leaves 00001000. Thus, d = 00001000. This is also our
mask.

The second line “m =m | d” will bit-wise OR the mask with variable m. Since the mask has value 1 at bit
position 3, m3 will be set to 1, while the rest of variable m will be unchanged. We can rewrite this more
compactly by the single line

m=m| (1<<3); or alternatively m |=(1<<3);

Note that these lines will set m3 to 1, and leave the rest of variable m unchanged. If instead we wanted to set
m6 to 1, we could write

m |=(1<<6);

Now we will show how the bit-wise AND operation can be used to clear bits. Consider the C language
instructions

d=1<<3;
d ="~d;
m=m&d;

The first line ” d = 1 << 3” will leave d = 00001000. The second line “d = ~d” will leave d = 11110111. This is
our mask. The third line “m = m & d” will bit-wise AND the mask with variable m. Since the mask has value 0
at bit position 3, m3 will be cleared to 0, while the rest of variable m will be unchanged. We can rewrite this
more compactly by the single line

m=m & (~(1 << 3)); or alternatively m &= (~(1 << 3));

Note that these lines will clear m3 to 0, and leaving the rest of variable m unchanged. If instead we wanted to
clear m6, we could write

m &= (~(1 << 6));
Finally, note that we use the term “clear” to mean setting a value to 0, and the term “set” to mean setting a
value to 1. Though this is not a standard terminology, it is used in technical documents frequently.

Sometimes documents will just state “set” and assume you know that it means “set to the value 1”, and
“clear” to mean “clear to the value 0”. This does not happen all the time but be aware of it.
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Appendix A Schmidt Trigger

Schmidt triggers are a circuit technology that will sharpen the rise and fall of digital signals. To illustrate this,
consider the Schmidt trigger circuit in Figure A.1. The circuit has two threshold voltage values: low and high.
If the input signal goes above the high threshold, the output signals goes high, and similarly for the low
threshold. In Figure 5, the input signal is pretty ugly with lots of bumps, and where the rise and fall is not
steep at all. But notice the output has sharp rise and falls. So the Schmidt trigger can be used to “clean up”
ugly input signals. You can find more information about Schmidt triggers on the Internet:

http://en.wikipedia.org/wiki/Schmitt_trigger

Input High threshold

% Aowthreshold TN N

Schmidt trigger

schematic
Output

Figure A.1. Schmidt trigger.
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