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Abstract 
 
Applications that require periodic optical connectivity may be serviced by scheduled 
lightpaths.  Many applications have flexibility about when exactly the scheduled 
lightpaths should occur.  Lightpath service providers can exploit the flexibility to 
schedule the connections to better utilization of resources, and presumably lower prices 
for clients.  To find the relationship between network resources and time flexibility, a 
simple WDM link and a leaky bucket traffic model are considered.  The network 
resources, and in particular the required number of wavelengths W, is shown to be a 
function of the traffic parameters and the time flexibility.  For random traffic, simulations 
are used to measure the sensitivity of W with time flexibility. 
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1 Introduction 
 
Scheduled lightpaths [1] [2] are required to support applications requiring optical 
connections with known set-up and tear-down times.   For example, an IP service 
provider may build its network using lightpaths as IP links leased from a lightpath service 
provider.  The IP network has a baseline topology that provides guaranteed network 
capacity at all times.  The links are realized by static lightpaths.  However, during peak 
traffic hours (e.g., working hours of 8am to 5pm), the IP network needs additional links.  
The additional links can be realized by periodic lightpaths [3] that are scheduled from 
8am to 5pm daily.  Another example is an office that requires a daily Gigabit Ethernet 
connection to a remote data storage facility to back-up data, say starting at 12 midnight 
for 30 minutes.  
 
An alternative to scheduled periodic lightpaths are dynamic lightpaths [4], where users 
can quickly set up and tear down lightpaths with their lightpath service providers.  
However, dynamic service is less reliable.  For example, consider the earlier scenario 
where an office backs-up its data at a remote storage facility.  The office must set-up a 
dynamic lightpath per day at midnight from a service provider.  However, if, for some 
particular day, the service provider experiences an unusually high load then the office 
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may be denied service.  On the other hand, a periodic lightpath service [3], once set up, 
provides a guaranteed lightpath starting at the same time every day. 
 
The costs for a scheduled lightpath may be based on usage-based pricing by the service 
provider, such as daily duration, bit rate and other requirements of the customer.  Also it 
may depend on Time-of-Day (ToD) pricing [5] [6] [7] for the lightpath service, e.g., a 
start time during peak traffic hours will be more expensive than light traffic hours.  In this 
paper, we consider another feature of scheduled lightpaths that has not been analyzed in 
the current literature.  We refer to this as time flexibility.  To describe this feature, let us 
recall the storage back-up example.  Let the office require 30 minutes of lightpath service 
per day over a service period of a year.  But now suppose the service does not have to 
start at 12 midnight.  However it must start at some fixed time every day because the 
back-ups must be done regularly.  Any fixed time will do as long as no one is working in 
the office, e.g., between 12 midnight and 4 am.  Thus, the office is flexible with respect 
to the start time of the lightpath service.  When the office applies for a periodic scheduled 
lightpath from a service provider, it can include its flexibility.  Then the provider can 
choose a start time that will efficiently utilize its resources.  For example, the provider 
may choose 3 am for the start time because then it is the least busy period.  Then the 
provider notifies the office of its service including the start time.  Subsequently the office 
will have a lightpath for 30 minutes every day at 3 am for a period of a year.  Note that 
flexibility in start time during set-up of periodic network services will lead to better 
utilization of resources for the service provider, and presumably lower prices on lightpath 
services for the customer.  
 
In this paper, we will consider scheduled lightpaths that are periodic and have time 
flexibility. We investigate how the flexibility of service starting time may improve the 
utilization of network resources, and may have an effect on the price of services. Network 
cost and its dependence on time flexibility will be analyzed.  In this paper, we take the 
network cost to be the number of wavelengths.  Also, we consider the problem of 
scheduling these lightpaths, and present efficient algorithms to solve the problem.   
 
We focus on a simple scenario.  There is a single fiber-link with W wavelengths.  Though 
our discussion will focus on a single link, it also applies to unidirectional WDM ring 
networks, where scheduled lightpaths are full duplex. 
 
We assume time is organized into time slots, that are numbered 0, 1, ..., T-1, where T 
denotes the number of time slots in a day.  For example, we can assume time slots 0 and 
T/2 are, respectively, 12 midnight and 12 noon.  Throughout the paper, we will use the 
following terms for subsets of the interval ]1,0[ −T .  An ordinary interval ],[ ts  is just a 
subinterval of ]1,0[ −T , where ts ≤ .  If ]1,0[, −∈ Tts  and ts >  then ],[ ts  is a wrap 
around interval which corresponds to the time slots ],...1,0,1,...,1,[ sTtt −+ .  The size of 
an interval ],[ ts  is denoted by ],[ ts .  A scheduled lightpath for the link is characterized 
by a triple ),,( Lsw , which means wavelength w is used for a duration of L time slots 
starting from slot s per day.  Since the service repeats every T time slots, we assume 
without loss of generality that TL ≤ .  The service duration may wrap around from the 
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end of a day to the beginning of the next.  For example, the lightpath service )4,2,( −Tw  
is for the time slots [T-2, T-1, 0, 1].       
 
A request for lightpath service is a triple ),,( Lba , where the service has duration L, and 
the first time slot of the service must be in the time interval ],[ ba .  The interval ],[ ba  is 
referred to as the request’s start window, and the value 1],[ −ba  is its time flexibility.  
The time flexibility ranges from 0 to 1−T , where 0 corresponds to no flexibility, and 

1−T  corresponds to no restrictions.  The parameters a and b are referred to, respectively, 
as the earliest and latest start times for the lightpath.  A request ),,( Lba  can be assigned 
to a lightpath service )',,( Lsw  if LL =' and ],[ bas ∈ .   
 
We assume that there is a batch of requests for lightpath service for the WDM link, which 
is empty at time 0.  A feasible assignment of the requests to lightpath services is one 
where there is at most one lightpath service per wavelength at all times.  An example 
feasible assignment is shown in Figure 1, when W = 2 and T = 8.  The lightpath requests 
are (4,6,4), (3,3,2), (7,1,3), and (1,3,4).  Note that the lightpath service for (4,6,4) wraps 
around.  Also note that (3,3,2) has no flexibility and the other requests have time 
flexibilities of 2. 

 

    0   1   2    3   4    5   6    7 
time 

0

1wavelength 
(3,3,2) 

(4,6,4) 

(7,1,3) (1,3,4) 

 
Figure 1. An assignment of four scheduled lightpaths. 

 
An alternative to modeling traffic as a batch-of-requests is to model requests as arriving 
in some sequence over time.  Then the requests are assigned periodic scheduled 
lightpaths, one at a time, as they arrive.  The batch model better highlights improvements 
due to time flexibility because the optimization of assignments can be better coordinated 
over the entire batch.  In this paper, we only consider the batch-of-requests traffic model. 
 
We consider how time flexibility can lead to better use of resources, and in particular 
minimizing the number of wavelengths.  In Section 2, a simple leaky bucket traffic model 
[8] is applied to model lightpath requests.  The model captures the key characteristics of 
burstiness, peak-load, and average-load.  We assume all lightpath requests have the same 
time flexibility. The traffic model leads to closed-form formulas that show a relationship 
between the number of wavelengths, the time flexibility, and the parameters of the traffic.  
The accuracy of these formulas is discussed.  In Section 3, traffic with different time 
flexibilities is considered.   
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Simulations to measure how the number of wavelengths depends on time flexibility are 
presented in Section 4, where we also compare the simulation results with the formulas 
derived in Section 2. Heuristic assignment algorithms were applied because the problem 
of finding a feasible assignment that uses a minimum number of wavelengths is NP 
Complete.  The simulation results indicate that there can be significant reductions in the 
number of wavelengths with a modest amount of time flexibility.  Our final remarks are 
given in Section 5. 
 
Next, we discuss other related work. Time division multiplexed (TDM), WDM networks, 
as studied in [9], [10], and [11], focus on assigning time slots in a periodic frame and 
routing for constant-bit-rate, sub-wavelength connections.   The concept of scheduled 
lightpaths is presented in [1] and [2] but without time flexibility.  The problem of 
scheduling on a single WDM link with no flexibility is related to the circular interval 
graph coloring problem [14].  In [14], upper bounds were given on the number of colors 
needed for the problem. 
 
Advance reservations in [12] and [13] considered earliest and latest start times in 
connection requests and the complexity of selecting paths in a network.  Our heuristics 
use techniques based on variable and value ordering that were used in [15] to solve the 
job shop scheduling problem as a constraint satisfaction problem (CSP).  The work in 
[16] and [17] proposed traffic models that consider both earliest and latest start times of 
connection requests, but there is no detailed study of the relationship between flexibility 
in start times and the number of required wavelengths.  In addition, we are unaware of 
any earlier work that applies the leaky bucket traffic model in the context of scheduled 
lightpaths as we do in this paper.  Nor are we aware of any earlier work that has closed-
form expressions relating the number of wavelengths, time flexibility, and traffic 
parameters. 
 
2 Wavelength Efficiency for Single Time Flexibility 
 
In Subsection 2.1, we describe the traffic model, which is essentially the same traffic 
model introduced by Cruz [8] for packet traffic.  In Subsection 2.2, we present 
preliminary lemmas, and in Subsection 2.3, we have formulas for the required number of 
wavelengths and a discussion of their accuracy.   
 
2.1 Traffic Model 
 
We view the batch of lightpath requests as virtual packets as follows.  A lightpath request 

),,( Lba  is also referred to as a virtual packet in a virtual packet-switched, queueing 
system, where the wavelengths are transmission links.  The virtual packet “arrives” at 
time a, and has “transmission duration” L.   The earliest and latest it can start 
transmission is, respectively, a and b.  Thus, its “queueing delay” is at most 1],[ −ba , 
i.e., the time flexibility of the lightpath request.      
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For a lightpath request ),,( Lba , the lightpath service can occur anywhere in the interval 
[ ]1, −+ Lba .  We refer to the length of this interval as the spread for the request.  Note 
that the spread is the sum of the time flexibility and L.  The spread is the “total delay” of 
the virtual packet. 
 
For each time t, let )(tA  denote the sum of transmission durations of the virtual packets 
that arrive at time t.   We refer to this as the work that arrives at time t.  Let W be the 
number of wavelengths required to schedule the lightpath requests. 
 
We will characterize a batch of lightpath requests with the parameters (σ, ρ, π), where ρ 
is a measure of the average traffic load, σ is a measure of the traffic “burstiness”, and π is 
the peak load.  We say that the lightpath requests are (σ, ρ,  π ) constrained if for all time 
intervals [x, y],  
 

{ }∑ ∈
+≤

],[
],[,],[min)(

yxt
yxyxtA πρσ . 

 
In addition, we assume that ( ) TtA

Tt
ρ≤∑ −∈ ]1,0[

 and W≤ρ  so that the average requested 

traffic load will be within the capacity of the fiber-link.  Without loss of generality, we 
also assume that ρπ > . 
 
2.2. Preliminary Results 
 
We present two preliminary results in Lemmas 2.1 and 2.2.  Lemma 2.1 shows that we 
can split the traffic approximately evenly among the wavelengths.  Lemma 2.2 describes 
how traffic can be assigned time slots on a given wavelength. 
 
Lemma 2.1 is for the following simple load-balancing algorithm.  The algorithm attempts 
to distribute the virtual packets to the wavelengths so that each wavelength gets a fraction 
1/W of the work at all times, i.e., each wavelength gets about ( ) WtA /  of the work.  The 
algorithm keeps track of virtual packets (and their work) assigned to each wavelength, 
where initially no virtual packets are assigned.  
 
To be more specific, the algorithm considers virtual packets in the order they arrive 
starting from time 0.  For each wavelength k, let ( )tAk  denote the work of virtual packets 
that are assigned to the wavelength and arrive at time t.  The virtual packets that arrive at 
time t are considered one at a time in some arbitrary order and are assigned to the 
wavelengths with the least work, i.e., assigned to wavelength k with the smallest 

( )∑ ∈ ],0[ tn k nA . 

 
The load balancing has the following properties. Let Lmax denote the longest service 
duration required in the batch of requests.  The load balancing algorithm ensures that 
between any pair of wavelengths j and k, ( ) ( ) max],0[],0[

LnAnA
tn ktn j ≤− ∑∑ ∈∈

 for all t.  
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Also note that ∑ ∈ ],0[
/)(

tn
WnA is the average of ∑ ∈ ],0[

)(
tn k nA  over all wavelengths k.  

Thus, for any wavelength k and time t,  
 

( ) ( ) max],0[],0[
/ LWnAnA

tntn k ≤− ∑∑ ∈∈
.                                               (2.1) 

 
 
Now consider an arbitrary ordinary interval [s,t].  Note that ( )∑ ∈

−
],[

/)()(
tsn k WnAnA   

= ( ) ( )∑ ∑∈ −∈
−−−

],0[ ]1,0[
/)()(/)()(

tn sn kk WnAnAWnAnA  ( )∑ ∈
−≤

],0[
/)()(

tn k WnAnA  

( )∑ −∈
−+

]1,0[
/)()(

sn k WnAnA .  By applying Inequality (2.1) to the last expression, we 

have the following.  For any wavelength k and ordinary interval [s,t],  
 

( ) ( ) max],[],[
2/ LWnAnA

tsntsn k ≤− ∑∑ ∈∈
.                                            (2.2) 

 
Next consider a wrap around interval ],[ ts .  It is composed of two ordinary intervals 

]1,[ −Ts  and ],0[ t .  We can apply (2.1) and (2.2), to get the following.  For any 
wavelength k and wrap around interval ],[ ts ,  
 

( ) ( ) max],[],[
3/ LWnAnA

tsntsn k ≤− ∑∑ ∈∈
.                                            (2.3) 

 
Thus, inequality (2.3) is true for any interval ],[ ts . This implies the following lemma. 
 
Lemma 2.1.  Consider a batch of lightpath requests and its virtual packet model.  Let A(t) 
denote the work of the virtual packets that arrive at time t.  Let Lmax denote the length of 
the longest request. There is an algorithm that can split the batch of requests into W 
batches with the following properties.  For k = 1, 2, …, W, let Ak(t) denote the work of the 
virtual packets that arrive at time t for batch k.  Then, for every interval [s,t],  
 

( ) ( ) max],[],[
3/ LWnAnA

tsntsn k ≤− ∑∑ ∈∈
. 

 
We now turn our attention to Lemma 2.2.  Consider an arbitrary wavelength k and its 
batch of requests.  We will apply the following method to assign time slots to virtual 
packets.  We pick a starting time slot s.  We model the wavelength as a virtual packet-
switched, queuing system which has some work conserving service policy, e.g., first 
come first serve or earliest deadline first.  Just before the initial time s, the system is 
empty.  If s = 0, then the system runs until time slot T-1.  If s > 0, then the system runs 
from time slot s to time slot s-1, where time wraps around from T-1 to 0. Note that the 
virtual packets in queue at time slot T-1 are carried over to time slot 0 when time wraps 
around.   The virtual packets, for wavelength k, are served according to the service 
policy.  
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The method to assign time slots to virtual packets requires both a starting time slot s and 
a service policy.  At the final time slot s-1, there may be virtual packets still in queue, or 
the packet being serviced may require additional time slots.  Then we say that the starting 
time slot s leads to work overlap for the service policy.  The next lemma shows that under 
reasonable traffic conditions, there is a starting time slot s that leads to no work overlap. 
 
Lemma 2.2.  Consider a wavelength k and the lightpath requests that are assigned to it. 
Suppose 1

0
( )T

kt
A t T−

=
≤∑ .  We model the system using the virtual packet-switched, 

queueing system model.  Then, for any work conserving service policy, there is a starting 
time slot s that does not lead to work overlap. 
 
Proof.  We call a time interval [x,y] a single-backlog interval if the following two 
properties are true.  First, the starting time slot x has arrivals of virtual packets.  Second, 
suppose the system is empty except for the virtual packets that arrived in [x,y], and the 
service policy is used on the virtual packets starting from time slot x.  This creates a 
single busy period [x,z].  We say that the busy period overflows if ],[ zx > ],[ yx , i.e., it 
goes beyond time slot y. 
 
Now, for each time slot x that has virtual packet arrivals, we create single-backlog 
intervals [x,x].  If a single-backlog interval has a busy period that overflows into the next 
single-backlog interval then merge the two intervals and apply the service policy starting 
from the beginning of the new interval.  Note that the new interval is itself a single-
backlog interval.  Also note that we cannot have a situation where there is just one single-
backlog interval (i.e., it covers all T time slots) that overflows into itself.  Otherwise, its 
busy period is over T time slots, which contradicts the constraint 1

0
( )T

kt
A t T−

=
≤∑ .  When 

there are no possible mergings, there will be only single-backlog intervals that do not 
overflow. 
 
The beginning of one of the single-backlog intervals can be a starting time slot s.  Since 
none of the single-backlog intervals overflow into the next single-backlog interval, such a 
starting time slot does not lead to work overlap.  Hence, the lemma is true.   g 
 
Next we show a stability condition that leads to 1

0
( )T

kt
A t T−

=
≤∑  for all wavelengths k. 

Lemma 2.3.  Suppose there is a batch of lightpath requests that are (σ,ρ,π) constrained.  
Let the durations of the requests be at most maxL .  Suppose ρπ ≥≥ W ,  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+≥
max

max

3
3

1
LT

L
W ρ     (2.4) 

Then, for all wavelengths k, 1

0
( )T

kt
A t T−

=
≤∑ , and there is no work overlap. The queue 

system is then called stable. 
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Proof.  Lemma 2.1 implies a splitting of lightpath requests to the W wavelengths.  
Consider an arbitrary wavelength k, and let ( )tAk  denote the work of virtual packets that 
are assigned to the wavelength and arrive at time t.  The lemma implies, for any interval 

],[ ts , ( )nA
tsn k∑ ∈ ],[

 max3L≤  ( )∑ ∈
+

],[
/

tsn
WnA .  Since the lightpath requests are 

( )πρσ ,,  constrained,   
 

( )nA
tsn k∑ ∈ ],[

 max3L≤  { }],[',],[''min tsts πρσ ++ ,    (2.5)  

where 
W
σσ =' , 

W
ρρ =' , and 

W
ππ =' . 

 
In addition, the lemma implies  ( )nA

Tn k∑ −∈ ]1,0[
 max3L≤ ( )∑ −∈

+
]1,0[

/
Tn

WnA  

max3L≤ +
W
Tρ .  Inequality (2.4) implies max3LT

W
T

−≤
ρ .  Therefore,  ( ) TnA

Tn k ≤∑ −∈ ]1,0[
, 

and Lemma 2.2 can be applied to wavelength k and its batch of requests. g 
 
Condition 13 maxmin +> Ld  and Inequality (2.4) are due partly to the imperfect load 
balancing of Lemma 2.1.  Inequality (2.4) is also due to the fact that the lightpaths can 
have durations that make them impossible to pack into wavelengths efficiently.   To 
illustrate this, consider the following batch of requests.  Let n, k, and L be arbitrary 
integers.  Let 1−= nLT , all lightpaths have duration L, and all time slots have k arriving 
requests.  Let kL=ρ , 0=σ , and ∞=π .  Note that at most 1−n  lightpaths can fit into a 
wavelength, leaving at least 1−L  unused time slots.  Since there are kT  lightpaths, the 

number of wavelengths must be at least ⎟
⎠
⎞

⎜
⎝
⎛

−+
−

+=
−+

=
− LT

L
LT

kT
n
kT

1
11

1/)1(1
ρ .  Note 

the similarity between the last term and Inequality (2.4). 
 
The next corollary follows from the theorem and the fact that the spread of a lightpath 
request is the sum of its duration and time flexibility. 
 
2.3.  Wavelength Requirements 
 
The following is the main result of the section, which presents the relationship between 
the wavelength requirement and the spreads of the requests.  At the end of the subsection, 
we give an interpretation of the results. 
 
Theorem 2.1.  Suppose there is a batch of lightpath requests that are (σ,ρ,π) constrained.  
Let the durations of the requests be at most maxL .  Let the spreads of the requests be at 
least mind , and 13 maxmin +> Ld .  Suppose ρπ ≥≥ W , and inequality (2.4) is held 
 
and 
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( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−+
≥

ρπ
σ

π

/131 maxmin Ld
W     (2.6) 

 
Then there is a feasible assignment for the batch of lightpath requests, where all packets 
are scheduled within their spreads.  
 
Proof.   Given (2.4), Lemma 2.2 and 2.3 imply that for any work conserving service 
policy, there is a starting time slot m that leads to no work overlap.  Therefore, we can 
treat the virtual packet-switched, queueing system as an ordinary packet switched system 
over the time interval [m, m-1].  In addition, the traffic is constrained by Inequality (2.5). 
 
Consider first come first served as the service policy.  Consider an arbitrary virtual packet 
i and let its arrival time be denoted by t.  Let )(tg  denote the remaining amount of work 
at time slot t.  This includes residual work from packets that arrive before time t, and 
work of packets that arrive at time t, including virtual packet i. Since the service policy is 
first come first served, packet i will complete service within an interval of length )(tg  
beginning from time t.   Note that if )(tg  is within the spread of packet i then the packet 
will be served within its time flexibility. 
 
We now proceed to find an upper bound for )(tg .  Packet i arrives in a busy period, and 
let t’ denote the beginning of the busy period.  Note that )(tg  is the difference between 
the amount of traffic that arrived during the busy period up until time t, and the amount of 
work done during the busy period before time t.  Using (2.5), one can obtain 
 

  
( ) [ ]( )

[ ] [ ]{ } [ ]( )
( ) ( ){ } 11',1''min3

1,'],'',],'''min3
1,')(

max

max

'

+−−++=
−−++≤

−−= ∑ =

hhL
ttttttL

ttnAtg t

tn k

πρσ
πρσ  

 
where ],'[ tth = .  Note that the function ( ) ( ){ }hh 1',1''min −−+ πρσ  is the minimum of two 
linear functions of h, where one is nonincreasing and the other is nondecreasing.  The 
function is maximized when ( ) ( )hh 1'1'' −=−+ πρσ , which occurs when 

ρπ
σ

ρπ
σ

−
=

−
=

''
'h . 

 
Then  

( )

min

max

max

113

11'3)(

d
W

L

Ltg

≤

+
−

⎟
⎠
⎞

⎜
⎝
⎛ −+=

+
−

−+≤

ρπ
σπ
ρπ

σπ

 

 



 10

where the last inequality is implied by the Inequality (2.6).  Since min)( dtg ≤ , packet i  is   
scheduled within its spread.  Since packet  i  is arbitrary,  all packets are scheduled within 
their spreads, and the first come first served assignment is a feasible assignment.  g 
 
Corollary 2.1.  Suppose there is a batch of lightpath requests that are (σ,ρ,π) constrained.  
The requests have the same time flexibility f.   Let the durations of the requests be at least 

mimL  and at most maxL .  Suppose 13 minmax +−> LLf .  Suppose ρπ ≥≥ W , and 
inequality (2.4) is held, and 

τ
π

/1 f
W

+
≥      (2.7) 

where 13 maxmin −−+= LLff  and 
ρπ

στ
−

= .  Then there is a feasible assignment for 

the batch of lightpath requests.  
 
We have the following interpretation for the formula in (2.7).  To simplify the discussion 
we will assume that the lightpath durations are negligible so that ff = .  We consider 
lightpath requests which occur as a traffic burst at peak load π starting from some time t.  
The burst can remain at the peak load for a limited time length τ due to the (σ,ρ) 
parameters.  This is illustrated in Figure 2(a), which shows the distribution of traffic over 
time.  The burst is a rectangle with width τ.  If there is no time flexibility then, to support 
the traffic distribution, the number of wavelengths W must be at least the peak of the 
traffic distribution, i.e., the height of the rectangle.  If there is time flexibility f  then the 
traffic can shift to the right by f, as shown in Figure 2(b).  This reduces the traffic peak, 

and the number of wavelengths W, to 
τ

π
/1 f+

. 

 

 
Figure 2.  Traffic distribution sensitivity with f. 
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π
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The formula 
τ

π
/1 f+

 suggests that to significantly reduce wavelengths, the time 

flexibility f must be at least a significant fraction of τ, the maximum width of a burst at 
peak load.  Note that the formula is an upper bound for all traffic satisfying the (σ,ρ,π) 
constraints and is therefore conservative.  If the actual traffic has smaller bursts then the 
number of wavelengths may be more sensitive to f.  In addition, the bursts may have a 
different distribution than the rectangle shown in Figure 2.  For example, if the bursts 
have slopes to their sides (e.g., trapezoidal or triangular bursts) then the top of the bursts 
have a smaller traffic-mass than their base.  Since the top has a smaller traffic-mass, it 
takes a smaller f  (to widen the base) to reduce the height of the burst.  For these traffic 
distributions, the number of wavelengths is more sensitive to f. 
   
3 Wavelength Efficiency:  Multiple Time Flexibilities 
 
We consider multiple time flexibilities.  To model this, we assume that the traffic is 
composed of M  traffic types, for some integer M, and each traffic type k has the same 
time flexibility kf .  In addition, each traffic type k is ( )kkk πρσ ,,  constrained, where kσ , 

kρ , and kπ  are some parameter values. 
 
A simple method to determine the number of wavelengths for this traffic is to apply 
Corollary 2.1 to each traffic type.  Then for each traffic type k, we will have a number of 
wavelengths kW  to support only traffic type k.  If we use the right hand side of (2.7) for 

kW  then 
kk

k
k f

W
τ

π
/1+

= , where 13 maxmin −−+= LLff kk  and 
kk

k
k ρπ

σ
τ

−
= .  Then the 

total number of wavelengths required for the overall traffic is ∑ =

M

k kW
1

. 
 
We can further simplify the traffic model to lead to a rule of thumb for pricing lightpath 
services.  The simplification is to assume that the ( )kkk πρσ ,,  parameters have the same 
proportion over different traffic types.  In particular, there are valuesσ , ρ and π such 
that for each traffic type k, there is a constant kα  where σασ kk = , ραρ kk = , 

and παπ kk = .  Then
τ

π
α

/1 k
kk f

W
+

= , where
ρπ

σ
τ

−
= .  If kα is proportional to the 

number of lightpath requests of type k then we would expect that the price for lightpath 

service be proportional to
τ/1

1

kf+
.   

 
However, this estimate for the number of wavelengths can be inaccurate and conservative 
because there was no resource sharing across different traffic types.  For the rest of this 
section, we will present a more accurate but more complicated estimate.  To simplify the 
discussion, we will make the following assumptions.  First, for each traffic type k, kπ  is 
assumed to be essentially infinite.  Thus, we ignore a peak rate and the traffic is just 
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( )kk ρσ ,  constrained.  Second, T is very large and all lightpath durations are negligible 
compared to time flexibilities.  Then the traffic can be approximated by a fluid model.  
Also note that the spread of a lightpath request is equal to its time flexibility.  We also 

assume that W is large enough to accommodate all traffic, i.e., ( ) WnA
T

T

n
<∑ −

=

1

0

1 .    

 
Since the traffic can be approximated by a fluid model, it can be distributed evenly 
among all wavelengths.  Then the virtual packet-switched queueing system with W 
transmission links, each with a unit of bandwidth, can be approximated by a system with 
one transmission link with W units of bandwidth. 
 
Lemma 2.2 applies to this queueing system with one transmission link.  Then, for any 
work conserving service policy, there is a starting time slot s that does not lead to work 
overlap.  Therefore, we can treat the virtual packet-switched, queueing system as an 
ordinary packet switched system over the time interval [s, s-1].  Let us assume that the 
work conserving scheduling policy is earliest deadline first.  Then we can apply the 
results in [18], which provides upper bounds on the delays in the virtual packet-switched, 
queueing system.  Under our assumptions, these upper bounds correspond to time 
flexibilities.  Then we have the following conditions for each traffic type m, 
 

( )

∑
∑

−

=

−

=

−

−+
≥ 1

1

1

1
m

i i

m

i iiim
m

W

f
f

ρ

ρσσ
 

This can be rewritten as  

m

m

i imi
m

i i

f
ff

W ∑∑ −

==
−+

≥
1

11
)(ρσ

.          (3.1) 

If these conditions are satisfied for each traffic type m then there is a feasible assignment 
for the traffic. 
 
We now discuss the implications of (3.1).  To simplify the discussion further we consider 
only two traffic types (i.e., M = 2).  Then 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+
=

2

1
1

2

21

1

1 1,max
f
f

ff
W ρ

σσσ      (3.2) 

 
For comparison, the formula in (2.7) reduces to f/σ  under the simplifying assumptions.   
 
There are two cases to discuss. 
 

Case 1, 
1

1

f
W σ

= , i.e., traffic of type 1 dominates: 
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Then 
1

1 f
W

σ
α= .  If 1α is proportional to the number of lightpath requests of type 1 then 

each request contributes to W by an amount that is proportional to 1/1 f .  Then it is 
reasonable for the requests to have prices proportional to 1/1 f .  Customer prices for 
lightpath requests of type 2 can be small since they have no affect on network resources. 
We can also change 2f without affecting W.  
 
This case is illustrated in Figure 3.  Figure 3(a) is the traffic distribution when each traffic 
type k  has a burst kσ at time t, and average load kρ  thereafter.  Traffic type k can be 
shifted to the right by kf  which will reduce the peak traffic.  The shifted traffic 
distribution is shown in Figure 3(b), and recall that the number of wavelengths is 
dependent on the peak traffic.  Note that the burst 1σ  for traffic 1 has a distribution of a 

rectangle with a width of 1f , and it contributes to the peak traffic of 
1

1

f
σ .   Since the burst 

2σ  for traffic 2 is small, it can be shifted beyond the burst of type 1 without contributing 
to the peak traffic. 
 

Case 2, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+
=

2

1
1

2

21 1
f
f

f
W ρ

σσ  i.e., traffic of type 1 does not dominate: 

 
It is straightforward to rewrite W as  
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f
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f
f

ff

σ
ρ

σα
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α

σ
ρ

σ
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Suppose, respectively, 1α  and 2α  are proportional to the number of lightpath requests 
for, respectively, traffic of type 1 and 2.  Then customer prices for lightpath requests of 
type 2 should be proportional to 2/1 f .  Customer prices for lightpath requests of type 1 

should be proportional to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛+

2

1

2

11
f
f

f σ
ρ .  Notice that the prices are higher than for 

type 1 but the difference becomes smaller as the traffic becomes burstier or the 
flexibilities become the same. 
 
This case is illustrated in Figure 4.  Figure 4(a) is the traffic distribution when each traffic 
type k  has a burst kσ at time t, and average load kρ  thereafter.  Traffic type k can be 
shifted to the right by kf  which will reduce the peak traffic.  The shifted traffic 
distribution is shown in Figure 3(b), and recall that the number of wavelengths is 
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dependent on the peak traffic.  The burst 1σ  for traffic 1 has a distribution of a rectangle 
with a width of 1f .   The burst 2σ  for traffic 2 is large, so to minimize the peak traffic, it 
must be distributed as shown in Figure 4(b).  In particular, it must be distributed so that 
the overall traffic load over the time interval [ ]2, ftt +  is flat.  During this interval, there 
is the burst 1σ , the burst 2σ , and average traffic load 1ρ , that have been shifted from time t 
to time 1ft + .  The total traffic in this interval is ( )12121 ff −++ ρσσ .  This total traffic 
divided by the interval length 2f  is the peak traffic. 

 
Figure 3.  Traffic distribution dominated by traffic of type 1. 

 
Figure 4.  Traffic distribution when traffic is not dominated by traffic of type 1. 
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4 Algorithms and Performance 
 
We ran simulations to study how wavelengths depend on time flexibility for randomly 
generated traffic.  The problem of determining the number of wavelengths given a batch 
of lightpath requests is an NP Complete problem.  In particular, a special case of the 
problem is when the requests have no restrictions on time flexibility, i.e., the time 
flexibility is Τ−1. Then the problem is the bin packing problem [19], where the 
wavelengths are the bins, T is the size of each bin, and the requests are the objects to be 
packed in the bins.  The bin packing problem is NP Complete.  Therefore, since we are 
considering large instances, we use heuristics to determine the number of wavelengths.  
The heuristics are described in Subsection 4.1.  Our simulations and performance results 
are presented in Subsection 4.2. 
 
4.1 Heuristics 
 
The following are the heuristics we considered.    The first set of heuristics use the virtual 
packet-switched queueing system model as described in Section 2.1, where the lightpath 
requests are virtual packets and wavelengths correspond to the transmission links.  For a 
given number of wavelengths W, the basic computation of the heuristic is as follows.  
Virtual packets are scheduled starting from some time slot s in the time interval [s, s−1], 
if s > 0, or [0, T-1], if s = 0.  To simplify our discussion, we will assume without loss of 
generality that s > 0, and so the interval is [s,s−1].  The scheduling algorithms we 
considered were first come first served (FCFS) and earliest deadline first (EDF).   In the 
case of FCFS, a virtual packet (a, b, L) with the smallest “arrival time” a is scheduled 
first.  In the case of EDF, a virtual packet (a, b, L) with the smallest “deadline” b+L is 
scheduled first.  In both cases, a scheduled virtual packet is assigned to the lowest 
available wavelength within its allowed spread. 
 
As the scheduling reaches the end of the time interval [s, s−1], there may be virtual 
packets that are queued that require time slots that wrap around to the beginning of the 
time interval.  They are assigned to wavelengths with the available time slots.  Note that 
these virtual packets create a burst of traffic load around time s which we refer to as the 
wrap around traffic load.   This can limit wavelength efficiency.   
 
Our algorithms consider each value of s until it finds a feasible assignment.  There may 
be no feasible assignment if W is too small.  The aforementioned heuristics assign 
lightpath requests by following the time interval [s, s−1], and assign requests to the 
available wavelength.  The next three heuristics use a different assignment approach by 
filling one wavelength at a time, starting from wavelength 0, and assign request to 
available time slots. 
 
For the Lowest Wavelength, Maximum Duration (LWMD) heuristic, to fill wavelength k, 
lightpath requests that have longer durations are considered first, where ties are broken 
randomly.   Preference is given to requests with longer durations because they are more 
difficult to assign.  To fit a lightpath request ),,( Lba  into the wavelength, start times are 
considered in the start interval ],[ ba  beginning with a. 
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For the Lowest Wavelength, Fixed (LWFixed) heuristic, an initial time s is chosen.  It fills 
one wavelength at a time, starting from wavelength 0.  It fills each wavelength k by 
starting from the same initial time s as follows.  Without loss of generality, we assume s 
> 0.  Choose the longest unassigned request ),,( Lba  that could start at time s and assign 
it starting from s.  Continue filling the wavelength from time Ls +  (here, the addition is 
modulo T).    If there is no such request then continue filling the wavelength from time 
s+1.  This continues until we reach the end of the interval [s, s−1].  When all requests are 
assigned, then the number of wavelengths W is noted.   Note that since LWFixed always 
fills wavelengths from the same initial time, it creates a wrap around traffic load like EDF 
and FCFS.  The next heuristic tends to avoid this. 
 
The Lowest Wavelength, Continuous (LWCont) heuristic is similar to LWFixed.  It fills 
wavelength 0 in the same way by starting from time 0.  However, it fills wavelength k > 0 
by starting at a time t that depends on how wavelength 1−k  was filled.  In particular, if 
wavelength 1−k ’s last request was assigned time slots ],[ yx  then wavelength k is filled 
starting from 1+y  (here, the addition is modulo T).  In this way, the assignment for 
wavelength k continues from where the assignment for wavelength 1−k  ended. 
 
The last heuristic is the assignment algorithm described in Section 2.2.  The traffic is first 
split among the wavelengths using the load balancing algorithm of Subsection 2.2.  For 
each wavelength, its traffic is assigned time slots using the algorithm described in 
Subsection 2.2 where the work conserving policy is earliest deadline first.  We will refer 
to this as the Load Balance Then Schedule (LBTS) algorithm. 
 
4.2. Simulations 
 
We simulated the algorithms in Subsection 4.1 for the following traffic.  Each time slot is 
a 10 minute period.  The number of time slots is T = 144, which is the number of slots in 
a 24 hour period.  There is a fixed number of lightpath requests R with the same 
flexibility f.  The durations of the lightpath requests were chosen either (i) randomly, 
independently, and uniformly distributed on the interval [1, δ-1], where δ is a parameter; 
or (ii) all have the same fixed duration .  Then the average duration avgL = δ/2 if the 
durations are random, or avgL = δ if the durations are fixed.   
 
Let {s1, s2, ...., sR} denote the start times of the lightpath requests.  These start times are 
independent and identically distributed.  We consider three distributions.  The first is the 

uniform distribution on the interval [0, T-1], i.e., it has a density function ( )
T

tp 1
=  for 

all [ ]1,0 −∈ Tt .  The other two distributions model a single peak of traffic.  The second 
distribution has a single uniform burst on the interval [T/3, 2T/3]. We refer to 
it as the rectangular distribution.  It has the following density function  

( )
⎩
⎨
⎧ <≤

=
otherwise

TtTif
tp

1.0/(1.4T)
3/23/ T) 2.2/(1.4

 



 17

 
The third distribution is a modified Gaussian distribution with mean μ = Τ/2 and variance 
σ. We describe its density function p.  For each time slot t in [0, T-1], there is a function 
to model the distribution of request start time ( )( )22 2/5.0exp)( σμ−+−= ttg .   (Note 
that t+0.5 is the time instant in the middle of time slot t.)  The start times of the lightpath 
requests are distributed according to the following density function 

( ) ( )
⎩
⎨
⎧ <≤

=
otherwise

TtifGtg
tp

0
0/

 

where ∑ −

=
=

1

0
)(T

t
tgG  is a normalization constant. 

 
The simulations measured the number of wavelengths required for each heuristic 
algorithm as shown in Figures 5, 6, 8 and 10.  For EDF, FCFS, and LBTS, the algorithms 
were applied to different numbers of wavelengths.  The wavelength chosen was the 
smallest that allowed all lightpath requests to be scheduled.  The figures show the 
average number of wavelengths over 10 randomly generated batches of traffic. 
 
In addition, the figures present three additional curves.  The first curve is the 

constant
T

RLavg , which is the statistical mean of the traffic load averaged over the time 

slots.  We refer to this as the “Statistical Lower Bound” because it is a lower bound on 
the number of wavelengths if the total traffic load equals its statistical mean.  The second 
curve is the upper bound of Corollary 2.1, which is computed as follows.  For each 

random batch of simulation traffic, the values (σ,ρ,π) are computed as ρ = ( )∑ −

=

1

0

1 T

t
tA

T
, 

( )tAtmax=π , and σ is the smallest value that satisfies 

{ }∑ ∈
+≤

],[
],[,],[min)(

yxt
yxyxtA πρσ  over all time intervals [x,y].  Then  

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+

=
max

max

3
3

1,
/1

max
LT

L
f

W ρ
τ

π        (4.1) 

is calculated as described in the corollary.  The figures plot the average of W over the 10 
batches of traffic, and only when 13 minmax +−> LLf .  We refer to this as the “Empirical 
Upper Bound”.  
 
The third curve is also computed using the formula (4.1), but it assumes that the traffic 
load at each time t is exactly equal to the statistical mean at that time, 
i.e., ( ) ( ) RLtptA avg= .  We refer to this as the “Statistical Upper Bound”.  Note that this 
may not be an upper bound for every random batch of requests.  Also note that 
computing this statistical upper bound curve only depends on the expected traffic load, 
which is a prediction of the actual traffic load.  We shall see if the bound is an accurate 
predictor of the number of wavelengths.   
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Next we present results of simulations performed on traffic requests with random 
durations.   Figure 5 shows the number of wavelengths when the starting times are 
uniformly distributed, δ = 24, and R = 288.  The average number of wavelengths is 
plotted versus time flexibility.  The LWCont, LWFixed, and LWMD require the least 
wavelengths, where LWCont and LWFixed are almost identical.  Notice that modest 
amounts of flexibility result in significant reduction in wavelengths.  When the flexibility 
is 24, the average number of wavelengths is within two of the lower bound of 24.  The 
other algorithms EDF, FCFS, and LBTS are inefficient.  EDF and FCFS are inefficient 
because of the wrap around traffic load.  LBTS is inefficient because it uses a simple load 
balancing rule, which will likely create a high load on a wavelength.  We do not show the 
empirical or statistical upper bounds because they are quite loose with an average value 
of 48.   The statistical lower bound is the value 24. 
 

Wavelength requirements - Uniform duration [1,23], uniform start time 
[0,143], fixed flexibility in start time for all 288 requests
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Figure 5.  Uniform distribution in start times, δ = T/6 = 24 and R = 288. 

 
Figure 6 presents the results for the smaller value of δ = 3 and R = 2016.  Then 1min =L  
and 2max =L .  Now the algorithms have similar performance, and the upper bounds are 
better estimates of performance. 
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Wavelength requirements - Uniform duration [1,2], uniform start time 
[0,143], fixed flexibility in start time for all 2016 requests
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Figure 6.  Uniform distribution in start times, δ = 3 and R = 2016. 

 
Next we consider simulations for a rectangular distribution of start times when 3=δ and 
R = 2016.  The distribution has a single uniform burst on the interval [T/3, 2T/3] (e.g., 
peak hours 8 AM to 4 PM) at an average traffic load of 33.  Outside the interval, the 
average traffic load is 15.  Figure 7 presents  the traffic load over time for a sample batch 
of traffic and the statistical mean of the traffic load, i.e., ( ) RLtp avg .  Note that the sample 
batch is much burstier than the statistical mean. 
 
Figure 8 presents results for the rectangular distribution of traffic.  FCFS, EDF, and 
LBTS have similar performance, and perform better than LWMD, LWFixed, or LWCont.  
In the case of FCFS and EDF, the shape of the rectangular distribution, with a large peak 
and a large valley eliminates the effect of wrap around traffic load.  In particular, if the 
wrap around traffic load is in the valley, it will have no effect on the number of 
wavelengths, which is determined by the peak. In the case of LBTS, since the lightpath 
durations are small, the traffic is split evenly among the different wavelengths and leads 
to efficient wavelength use. Note that LWMD, LWFixed, and LWCont have almost 
identical performance.   
 
For this traffic, the statistical upper bound is an accurate estimate of the number of 
wavelengths.  This may be explained by the rectangular shape of the distribution of the 
statistical mean. Since the shape is similar to Figure 2, it leads to the performance of 
Corollary 2.1 and formula (4.1).  The empirical upper bound is more conservative 
because its ( )πρσ ,,  values were computed for a burstier traffic. 
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Traffic for Rectangular distribution
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Figure 7.  Traffic for Rectangular distribution. 

 
Wavelength requirements - Uniform duration [1,2], rectangular start time, fixed 

flexibility in start time for all 2016 requests
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Figure 8.  Rectangular distribution in start times, δ = 3 and R = 2016. 

 
Next we consider simulations for the modified Gaussian distribution for start times when 

3=δ  and R = 2016.  Note that there is a peak traffic period during the day, e.g., during 
working hours. The statistical distribution has a mean of T/2, which is 72 slots of 10 
minutes each or 12 hours (noon).  The standard deviation is set at T/6, or 4 hours.  Figure 



 21

9 presents the traffic load over time for a sample batch of traffic and the statistical mean 
of the traffic load. 
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Figure 9.  Traffic for Modified Gaussian distribution. 

 
Wavelength requirements - Uniform duration [1,2], gaussian start 
time (mean = 72, SD= 24), fixed flexibility in start time for all 720 

requests
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Figure 10.  Modified Gaussian distribution in start times, δ = 3 and R = 2016. 

 
Figure 10 presents the results of the simulations.  The performance of the heuristics is 
similar to that of the rectangular distribution.  This is due to the fact that both the 
distributions are characterized by a single peak of traffic and a large valley. The statistical 
upper bound is still a reasonable estimate of the number of wavelengths, even though the 
burst of the modified Gaussian distribution is not shaped like a rectangle.   
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Figures 8, and 10 show that the statistical upper bound is a reasonable estimate of 
performance for traffic with a single peak.  But it is for traffic with small request 
durations, within 20 minutes.  In general, when the durations become large, the bound is 
a poor estimate.  Figures 11 and 12 show that the statistical upper bound can still be a 
reasonable estimate for 6=avgL , which corresponds to an hour.  But the durations are 
fixed, which improves the bound.  Figures 11 and 12 are for start times that have, 
respectively, the rectangular and modified Gaussian distributions.  In all cases, R = 720.  
Note that FCFS, EDF, and LBTS perform best.  Note that since the lightpath durations 
are fixed, FCFS and EDF are identical. 
 
The larger durations lead to differentiation of performances of LWFixed and LWCont 
from LWMD, where LWFixed and LWCont perform better.  Note that since all the 
lightpaths have the same duration, the LWMD becomes less effective. 
 

Wavelength requirements - Fixed duration [6], rectangular start time, fixed 
flexibility in start time for all 720 requests
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Figure 11. Rectangular distribution in start times, δ = 6 and R = 720. 
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Wavelength requirements - Fixed duration [6], gaussian start time (mean = 
72, SD= 24), fixed flexibility in start time for all 720 requests
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Figure 12. Modified Gaussian distribution in start times, δ = 6 and R = 720. 

 
 

5 Conclusions 
 
We considered scheduled lightpaths to provide periodic optical connectivity.  We 
discussed how time flexibility can reduce the number of wavelengths.  By applying the 
leaky bucket traffic model [1], we were able to derive formulas that show the relationship 
between wavelengths and traffic parameters and time flexibility.   
 
If the durations of the scheduled lightpaths are relatively short with respect to time 

flexibility, then the number of wavelengths is approximately
τ

π
/1 f+

, as described in 

Section 2.  We verified by simulation that this formula is a reasonable estimate for traffic 
that have a rectangular or Gaussian distribution, which are distributions with a single 
peak.  This is a relatively simple formula which may be useful for pricing. However, 
further study is required to completely understand how time flexibility affects 
wavelengths.  We demonstrated that traffic with multiple time flexibilities can complicate 
an accurate analysis.  Other directions for future work are to provide more accurate 
formulas when lightpath durations are large, and extend the analysis to multi-hop 
networks. 
 
We proposed and simulated a number of practical heuristic scheduling algorithms for a 
single WDM link.  Heuristics were used because the scheduling problem is NP-Complete 
even for the single link.  Our experiments showed that even moderate amounts of time 
flexibility can dramatically reduce the number of wavelengths.  FCFS, EDF, and LBTS 
work well when lightpath durations are short and for traffic with a single peak.  When 
lightpath durations are long, on average with a mix of lengths, then heuristics that fill low 
valued wavelengths first work better.  



 24

6 Acknowledgements 
 
The authors are grateful for the insightful comments of Dr. Gustavo de Veciana and 
reviewers. 
 
Reference 

 
[1]   J. Kuri, N. Puech, M. Gagnaire, E. Dotaro, R. Douville, Routing and wavelength 

assignment of scheduled lightpath demands, IEEE J. Sel. Areas Commun. 21 (8) 
(2003) 1231-1240. 

[2]   J. Kuri, N. Puech, M. Gagnaire, E. Dotaro, Routing foreseeable lightpath demands 
using a tabu search meta-heuristic, in: Proc. IEEE GLOBECOM 2002, Taipei, 
Taiwan, Nov. 2002, pp. 2803-2807. 

[3]  W. Su, G. Sasaki, Scheduling of periodic transfers with flexibility, in: Proc. 41st 
Annual Allerton Conference on Communication, Control, and Computing, 
Monticello, IL, Oct. 1-3, 2003. 

[4]  H. Zang, J. Jue, B. Mukherjee, A review of routing and wavelength assignment 
approaches for wavelength-routed optical WDM networks, Optical Networks 
Magazine 1 (1) (2000) 47-60. 

[5]  E. W. Fulp, D. S. Reeves, The economic impact of network pricing intervals, in: 
Proc. Adv. Internet Charging and QoS Technology ICQT 2002, Zurich, Switzerland, 
Oct. 16-18, 2002. 

[6]  E. W. Fulp, D. S. Reeves, Bandwidth provisioning and pricing for networks with 
multiple classes of service, Computer Networks:  Int. J. of Computer & Telecomm. 
networking 46 (1) (2004) 41-52. 

[7]  I. Ch. Paschalidis, J. N. Tsitsiklis, Congestion-Dependent Pricing of Network 
Services, IEEE/ACM Trans. Networking 8 (2) (2000) 171-184. 

[8]  R. Cruz, A calculus for network delay, part I: network elements in isolation, IEEE 
Trans. Info. Theory 37 (1) (1991) 114-131. 

[9]  S. Subramaniam, E. Harder, H. Choi, Scheduling multirate sessions in time division 
multiplexed wavelength-routed networks, IEEE J. Sel. Areas Commun. 18 (10) 
(2000) 2105-2110. 

[10] B. Wen, K. Sivalingam, Routing, wavelength and time-slot assignment in time 
division multiplexed wavelength-routed optical WDM networks, in: Proc. IEEE 
INFOCOM, June 2002. 

[11] A. Chen, A. K.-S. Wong, C.-T. Lea, Routing and time-slot assignment in optical 
TDM networks, IEEE J. Sel. Areas Commun. 22 (9) (2004) 1648-1657. 

[12] R. Guerin,  A. Orda, “Networks with advance reservations:  the routing perspective, 
in: Proc. IEEE INFOCOM, vol. 1, 2000, pp. 118-127. 

[13] J. Zheng, H. T. Mouftah, Routing and wavelength assignment for advance 
reservation in wavelength-routed WDM optical networks, in: Proc. IEEE Int. 
Conference on Communications ICC 2002, New York, Apr. 2002, vol. 5, pp. 2722-
2726.  

[14] A. Tucker, Coloring a family of circular arcs, SIAM J. Applied Math. 29(3) (1975) 
493-502. 



 25

[15] N.M. Sadeh, M.S. Fox, Variable and value ordering heuristics for the job shop 
scheduling constraint satisfaction problem, Artificial Intelligence, 86 (1996) 1-41. 

[16] L.-O. Burchard, On the performance of computer networks with advance reservation 
mechanisms, in: Proc. 11th IEEE Int. Conference on Networks ICON 2003, Sydney, 
Australia, 2003. 

[17] B. Wang, T. Li, X. Luo, Y. Fan, Traffic grooming under a sliding scheduled traffic 
model in WDM networks, in: Proc. IEEE Workshop on Traffic Grooming in WDM 
Networks, San Jose, Oct. 29, 2004. 

[18] J. Liebeherr, D.E. Wrege, D. Ferrari, Exact admission control for networks with a 
bounded delay service, IEEE/ACM Trans. Networking 4 (6) (1996) 885-902. 

[19] E. G. Coffman, M. R. Garey, D. S. Johnson, Approximation algorithms for bin 
packing: a survey, in: D. Hochbaum (Ed.), Approximation algorithms for NP-hard 
problems, PWS Publishing, Boston, 1996, pp. 46-93. 

 


