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Abstract:  A wavelength division multiplexed link is to be time shared by a given collection 
of optical connections.  The system is time slotted with period T.  Each optical connection has 
a prescribed duration per time period.  In addition, it has a prescribed time window within 
which its duration may begin.  The size of the window is the amount of time flexibility there 
is to schedule the optical connection.   The problem considered is to set up the optical 
connections.  Formulas are provided to show the relationship between wavelength efficiency 
and the “burstiness” and time flexibility of the connections.  In addition, simple heuristic 
algorithms are presented that perform well under simulations for randomly generated optical 
connections. 
 
1.  Introduction 
 
Wavelength division multiplexing (WDM) technology allows fiber-optic links to carry 
multiple wavelength channels, each capable of transporting tens of gigabits per second.  A 
wavelength routed network deploys WDM technology to carry lightpaths, which are end-to-
end optical connections.  If the network is all optical then lightpaths can carry signals with 
arbitrary signal formats, e.g., SONET or Gigabit Ethernet.  This is known as optical 
transparency and it provides greater flexibility to users.  However, many applications may 
need an optical connection for only short periods of time, and leasing a lightpath full time for 
that purpose may be too costly. 
 
In this paper, we consider networks where wavelengths are shared by time division 
multiplexing.  They support users that require lightpaths periodically, say once per day.  For 
example, a client may have built an IP network using lightpaths as IP links.  The IP network 
has a baseline topology that provides minimal network capacity at all times.  The links are 
realized by static lightpaths.  However, during working hours of 8am to 5pm when there is 
more traffic, the IP network needs additional links.  These additional links can be realized by 
lightpaths with periodic service.  
 
As another example, an office may require a Gigabit Ethernet connection to a remote data 
storage facility to transfer back up data.  It may need a lightpath service for 30 minutes per 
day between 12 midnight and 4 am.  Thus, there is a 3.5 hour window of flexibility within 
which the service can begin. 
 
To study periodic lightpath services, we consider a simple scenario.  There is a single fiber-
link with W wavelengths.  Time is slotted with T time slots per day, and over a period of a 
day, the time slots are numbered 0, 1,..., T−1.   Throughout the paper, we will use the 
following terms for subsets of the interval ]1,0[ −T .  An ordinary interval ],[ ts  is just a 
subinterval of ]1,0[ −T .  Note that this implies ts ≤ .  If ]1,0[, −∈ Tts  and ts >  then ],[ ts  is 
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a wrap around interval which corresponds to the time slots ],...1,0,1,...,1,[ sTtt −+ .  The size 
of an interval ],[ ts  is denoted by ],[ ts . 
 
A periodic lightpath service (or simply lightpath service) for the link is characterized by a 
triple ),,( Lsw , which means wavelength w is used for a duration of L time slots starting from 
slot s per day.  Since the service repeats every T time slots, we assume TL ≤ .  The service 
duration may wrap around from the end of a day to the beginning of the next.  For example, 
the lightpath service )4,2,( −Tw  is for the time slots [T-2, T-1, 0, 1].       
 
A request for lightpath service is a triple ),,( Lba , where the service has duration L, and the 
first time slot of the service must be in the time interval ],[ ba .  The interval ],[ ba  is referred 
to as the request’s start window, and the value 1],[ −ba  is its time flexibility.  The time 
flexibility ranges from 0 to 1−T , where 0 corresponds to no flexibility, and 1−T  
corresponds to no restrictions.  The parameters a and b are referred to as the, respectively, 
earliest and latest start times for the lightpath.  A request ),,( Lba  can be assigned to a 
lightpath service )',,( Lsw  if LL =' and ],[ bas∈ .   
 
The problem we consider is as follows. Given a batch of lightpath requests, assign them 
lightpath services so that at any time there is at most one lightpath service per wavelength.  
We will denote the longest duration of the batch by maxL .    
 
An example is shown in Figure 1 when W = 2 and T = 8.  It shows an assignment of the 
lightpath requests (4,6,4), (3,3,2), (7,1,3), and (1,3,4).  Note that the lightpath service for 
(4,6,4) wraps around.  Also note that (3,3,2) has no flexibility and the other requests have time 
flexibilities of 2. 
 
 
 
 
 
 
 
 
 

Figure 1.  An assignment of a batch of four lightpath requests. 
 
If the requests have no time flexibility then the problem is the same as wavelength assignment 
of lightpaths on a WDM ring with no wavelength conversion (e.g., see [2] [3] [4]).  For the 
problem, time slots correspond to the nodes of the WDM ring.   
 
In Section 2, we provide simple analytical results to show a relationship between wavelength 
efficiency, time flexibility, and the “burstiness” of lightpath requests.  We use a packet traffic 
model of Cruz [1] to model “burstiness” of requests.  In Section 3, we examine heuristic 
assignment strategies for randomly generated lightpath requests.  We propose several 
heuristics and compare their performance by simulation.  Our final remarks are given in 
Section 4. 
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2.  Tradeoff Between Wavelengths and Time Flexibility 
 
We will apply a traffic model introduced by Cruz [1] to characterize a batch of lightpath 
requests.  This model leads to formulas that relate time flexibility, burstiness of the requests, 
and wavelength efficiency.  Since this model is for packet traffic, we view the batch of 
lightpath requests as virtual packets as follows.  For simplicity, we refer to the sum of 
durations of a set of lightpath requests as the work  for the set. 
 
Virtual Packet (VP) Model.  A lightpath request ),,( Lba  is also referred to as a virtual packet 
in a virtual packet-switched, queueing system, where the wavelengths are transmission links.  
The virtual packet “arrives” at time a, and has “transmission duration” L.   It can be delayed 
no more than 1],[ −ba  time units, i.e., the time flexibility of the lightpath request.   For each 
time t, let )(tA  denote the work of the virtual packets that arrive at time t.  g 
 
Cruz [1] characterized packet traffic with two parameters (σ, ρ), where ρ is a measure of the 
average traffic rate, and σ is a measure of the traffic burstiness.  We say that the lightpath 
requests are (σ, ρ) constrained if for all time intervals [x, y],  
 

∑∈
+≤

],[
],[)(

yxt
yxtA ρσ . 

 
We also assume that W≤ρ  so that the requested bandwidth will tend to be within the 
capacity of the fiber-link.  This does not guarantee that the requested bandwidth will be within 
the capacity because σ can be larger than 0. 
 
The main results of this section are in two theorems that describe conditions under which an 
assignment can be found for the batch of lightpath requests.  The first assumes that lightpaths 
do not wrap around at the end of ]1,0[ −T .  This makes it easier to find assignments for the 
lightpath requests.  The second theorem is for the general case when lightpaths can wrap 
around. 
 
For the results, we will refer to the VP Model and the following First Come First Served 
(FCFS) assignment of lightpath requests.  FCFS considers time slots in sequence starting from 
0.  At time t, both arriving and “queued” virtual packets (i.e., virtual packets that arrived 
before time t but are still unassigned) are assigned to available wavelengths with preference to 
those that arrived earliest.  When a virtual packet ),,( Lba  is assigned to a wavelength w, its 
lightpath service starts at time t and has duration L.  Unassigned virtual packets are queued for 
time slot t+1.   
 
The theorems are stated next and then their proofs. 
 
Theorem 1.  Suppose the batch of lightpath requests are (σ, ρ) constrained.    Let  
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Suppose 0)( =tA  for all [ ]1),( max −+−∈ TLfTt , i.e., there are no virtual packet arrivals for 
the last 1max −+ Lf  time slots in ]1,0[ −T .  (This last condition insures that lightpaths will 
not wrap around at the end of ]1,0[ −T .)  Then there is an assignment for the lightpath 
requests if their time flexibilities are at least f .  
 
Theorem 2.  Suppose the lightpath requests are (σ,ρ) constrained, and 

( ) ( )max
1

0
LTWtAT

t
−≤∑ −

=
 . Let 



 −++= 13 max WW

Lf ρσ . Then there is an assignment for the 

batch of lightpath requests if their time flexibilities are at least f . 
 
Before presenting the proofs, we share the following observations.  Note that allowing 
lightpaths to wrap around at the end of ]1,0[ −T  will make it more difficult to find an optimal 
assignment for lightpath requests.  As a result, the required time flexibility f is higher in 
Theorem 2.  Also note that the required time flexibility f is dependent on the burstiness σ  of 
the requests and the number of wavelengths W.   Higher burstiness of requests result in higher 
required time flexibilities and or wavelengths.     
 
Finally, note that the necessity of the constraint ( ) ( )max

1

0
LTWtAT

t
−≤∑ −

=
 in Theorem 2 can be 

partly justified through the following example.  Let k and L  be integers.  Suppose 
1−⋅= LkT  and all lightpath requests have duration L .  Then at most 1−k  lightpath services 

can be assigned to a wavelength.  The 1−k  lightpath services of duration L  correspond to 
work equal to ( ) ( )11 −−=− LTLk .  Thus, the total amount of work that can be assigned to 
the wavelengths is at most ( ))1( −− LTW .   
 
Proof of Theorem 1.  We use the VP Model.  We assume that all the requests are assigned 
using FCFS and none of the lightpaths wrap around.  At the end of the proof, we will verify 
that all the lightpaths begin in the prescribed start windows and none of the lightpaths wrap 
around.   
 
We will consider an arbitrary virtual packet ),,( Lba .  Let t denote the time when it gets a 
wavelength.  We will show that fat +≤ .    
 
In the subsequent discussion, we refer to the system as being full if all wavelengths are being 
used.  Let s be the largest time such that as ≤  and the system is not full.  If s = a then at time 
a, the system is not full.   Then the virtual packet ),,( Lba  must have been assigned a 
wavelength at time a (i.e., t = a), and trivially fat +≤ . 
 
Now suppose as < .  At time s, since the system is not full, there are at most 1−W  virtual 
packets, which we refer to as the residual virtual packets.  Let R denote the amount of work 
left by the residual virtual packets at time s+1, and  note that R is at most ( )( )11 max −− LW .  

The amount of work C accumulated during the time interval [s+1,a] is ∑ +∈
+

],1[
)(

asn
nAR  

which includes the virtual packet ),,( Lba .   
 
Next note that, from the definition of s, the system is always full during the interval [s+1,a].  
The system is also full during ]1,[ −ta  because the virtual packet ),,( Lba  cannot get service 
before time t.  Thus, the system is full during the interval ]1,1[ −+ ts .  In addition, during 
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]1,1[ −+ ts , the system it is filled with work C.  Also, at time t, the system must have some 
work from C, and in particular from the virtual packet ),,( Lba .  Summarizing, during the 
interval ]1,1[ −+ ts , the system is always full of work from C, and at time t the system has 
some work from C.  This implies that work C must be greater than ]1,1[ −+ tsW , i.e.,  

( ) ∑ +∈
+<−−

],1[
)(1

asn
nARstW . 

 
Since the lightpath requests are (σ, ρ) constrained and ( )( )11 max −−≤ LWR , we have 

,)1)(1()1(
)()1)(1()1(
)()1)(1()1(

max

max

max

σ
ρσ
ρσ

+−−<−−
−++−−<−+−−
−++−−<−−

LWatW
saLWsaatW
saLWstW

 

The last inequality is due to W≤ρ .  It can be rewritten as 
W
LLat 1max

max
+−

++<
σ .  This 

implies fat +≤  because t and the time flexibilities are integer.   
 
We will show that fat +≤  implies the theorem.  First, note that since the time flexibility of 
the virtual packet is at least f, we have bfa ≤+ .  Then fat +≤ implies bt ≤ , and so the 
constraint ],[ bat∈  is satisfied, i.e., the lightpath service begins within the start interval of the 
request.  Finally, we will verify that all requests were assigned with no wrap around.  Note 
that the inequality fat +≤  implies that requests are assigned to lightpath services that start 
by time fa + , and end by time 1max −++ Lfa .   Recall that 0)( =tA  for the last 

1max −+ Lf  time slots in ]1,0[ −T .  Therefore, ( )maxLfTa +−≤ .  Then the lightpath 
services end by 1−T .  Since none of the lightpath services wrap around, FCFS assigns all 
requests.  g 
 
The problem with the FCFS assignment is that it tends to assign lightpaths close to time 0, 
which creates peak bandwidth demand around that time.  This leads to higher wavelength 
requirements.  For the proof of Theorem 2, we use another assignment strategy.  The strategy 
first distributes the requests to the wavelengths using a load balancing heuristic.  Then for 
each wavelength, it assigns time slots to requests.   
 
The following lemma is for the case of a single wavelength.  
 
Lemma 3.  Suppose 1=W  and the lightpath requests are (σ, ρ) constrained.  In addition, 
suppose TtAT

t
≤∑ −

=

1

0
)( and 1≤ρ .  Then there is an assignment for the lightpath requests if 

their time flexibilities are at least  1−+ ρσ . 
 
Proof.  We will use the VP Model.  We partition the time slots into intervals so that for each 
interval [x,y], the first slot x has arrivals of virtual packets and the other slots do not.  We refer 
to these as single-backlog intervals because they have the following property.  Use the FCFS 
algorithm to assign only the virtual packets of a single-backlog interval [x,y], starting from 
time slot x and assuming the system is empty.  This creates a single busy period [x,z].  If 

],[ zx > ],[ yx   then we say it overflows.   
 
If a single-backlog interval has a busy period that overflows into the next single-backlog 
interval then we merge the two intervals and apply FCFS starting from the beginning of the 
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new interval.  Note that the new interval is itself a single-backlog interval.  Also note that we 
cannot have a situation where there is just one single-backlog interval (i.e., it covers all T time 
slots) and it overflows into itself.  Otherwise, its busy period is over T time slots, which 
contradicts the constraint TtAT

t
≤∑ −

=

1

0
)( .  Eventually, there will be only single-backlog 

intervals that do not overflow.    
 
After the mergings of intervals, we consider an arbitrary virtual packet ),,( Lba .  Let t denote 
the first time slot when it gets its wavelength.   Note that the virtual packet ),,( Lba  is part of 
some single-backlog interval, and let s denote the beginning of this interval.  Also note that all 
virtual packets that arrive in the interval ],[ as  are the ones assigned to the time slots in ],[ ts .  

Therefore, ∑ ∈
≥

],[
],[)(

asn
tstA , which implies ],[],[ tsas ≥+ ρσ .  Since  

1],[],[],[ −+= taasts , we have ( ) 1],[],[1 −≥−− taasρσ .  Since 1≤ρ  and 1],[ ≥as , 

we have ( ) 1],[1 −≥−− taρσ .  Then ],[ bat∈  because (i) 1],[ −ta is the delay between a 
and t and (ii) the time flexibilities are at least  1−+ ρσ .  Thus, the FCFS assignments are 
proper and the lemma is proved.  g 
 
The following simple load-balancing algorithm attempts to distribute the virtual packets to the 
wavelengths so that each wavelength gets a fraction 1/W of the work at all times, i.e., each 
wavelength gets ( ) WtA /  of the work.  The algorithm keeps track of virtual packets (and their 
work) assigned to each wavelength, where initially no virtual packets are assigned.  The 
algorithm considers virtual packets in the order they arrive starting from time 0.  The virtual 
packets that arrive at time t are considered on at a time in some arbitrary order and are 
assigned to the wavelengths with the least work. 
 
The load balancing has the following properties.  For each wavelength k, let ( )tAk  denote the 
work of virtual packets that are assigned to the wavelength and arrive at time t.  The load 
balancing algorithm insures that between any pair of wavelengths j and k, 

( ) ( ) max],0[],0[
LnAnA

tn ktn j ≤−∑∑ ∈∈
 for all t.  Also note that ∑ ∈ ],0[

/)(
tn

WnA is the average of 

∑ ∈ ],0[
)(

tn k nA  over all wavelengths k.  Thus, for any wavelength k and time t,  

( ) ( ) max],0[],0[
/ LWnAnA

tntn k ≤−∑∑ ∈∈
.                                               (2.1) 

 
 
Now consider an arbitrary ordinary interval [s,t].  Note that ( )∑ ∈

−
],[

/)()(
tsn k WnAnA   

= ( ) ( )∑ ∑∈ −∈
−−−

],0[ ]1,0[
/)()(/)()(

tn sn kk WnAnAWnAnA  ( )∑ ∈
−≤

],0[
/)()(

tn k WnAnA  

( )∑ −∈
−+

]1,0[
/)()(

sn k WnAnA .  By applying Inequality (2.1) to the last expression, we have 

the following.  For any wavelength k and ordinary interval [s,t],  

( ) ( ) max],[],[
2/ LWnAnA

tsntsn k ≤−∑∑ ∈∈
.                                            (2.2) 

 
Next note that a wrap around interval ],[ ts , is composed of two ordinary intervals ]1,[ −Ts  
and ],0[ t .  We can apply (2.1) and (2.2), to get the following.  For any wavelength k and wrap 
around interval ],[ ts ,  
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( ) ( ) max],[],[
3/ LWnAnA

tsntsn k ≤−∑∑ ∈∈
.                                            (2.3) 

Note that the last inequality is also true for any interval ],[ ts . 
 
Proof of Theorem 2.   Let the load balancing algorithm assign the virtual packets to 
wavelengths, and for each wavelength k, let ( )tAk  denote the work of virtual packets that are 
assigned to the wavelength and arrive at time t.  Inequality (2.3) implies, for any interval 

],[ ts , ( )nA
tsn k∑ ∈ ],[

 max3L≤  ( )∑ ∈
+

],[
/

tsn
WnA .  Since the lightpath requests are ( )ρσ ,  

constrained,  ( )nA
tsn k∑ ∈ ],[

 max3L≤  ( ) Wts /],[ρσ ++ .  Therefore, the lightpath requests 

assigned to wavelength k are ( )',' ρσ  constrained, where 
W

L σσ += max3'  and 
W
ρρ =' .  Also 

note from Inequality (2.1), we have ( ) ( )∑∑ −∈−∈
+≤

]1,0[max]1,0[
/

TnTn k WnALnA .  Recall that 

( ) ( )max]1,0[
LTWnA

Tn
−≤∑ −∈

.  Thus, ( ) TnA
Tn k ≤∑ −∈ ]1,0[

.  Now we can apply Lemma 3 to 

wavelength k using the parameters ( )',' ρσ .  Hence, Theorem 2 is true for wavelength k.  
Since the wavelength is arbitrary, the theorem is true for all wavelengths.  g 
 
3.   Assignment Heuristics 
 
We will describe assignment heuristics that perform well for a random (“typical”) batch of 
lightpath requests.  Then we will present our simulations of the heuristics and compare their 
performances. 
 
3.1.  Heuristics 
 
First Come First Served (FCFS):  This was described in Section 2.  The following rules 
resolve ambiguities of the earlier description and introduces blocking.  When FCFS assigns 
virtual packets to wavelengths, lowest valued wavelengths are used first.  Virtual packets with 
earlier arrival times are assigned first, and ties are broken randomly.  If a virtual packet 

),,( Lba is unassigned by time Lb +  then it is blocked. 
 
Earliest Deadline First (EDF):  This is the same as FCFS except when assigning virtual 
packets to wavelengths, preference is given to virtual packets ),,( Lba  with the earliest 
deadline, i.e., Lb + , the last possible time slot for the end of the lightpath. 
 
FCFS and EDF tend to assign lightpaths close to time 0 which creates a peak bandwidth 
demand at time 0.  The next heuristics tend to avoid the problem.  They fill wavelengths with 
lightpath requests one wavelength at a time.  In this way, they assign lightpath requests in 
batches, where each batch is evenly distributed over time.   
 
Lowest Wavelength, Maximum Duration (LWMD):  Wavelengths are filled with lightpath 
requests one wavelength at a time and starting from wavelength 0.  To fill wavelength k, 
lightpath requests that have longer durations are considered first, where ties are broken 
randomly.   To fit a lightpath request ),,( Lba  into the wavelength, start times are considered 
in the start interval ],[ ba  beginning with a.   
 
Note that preference is given to requests with longer durations because finding assignments 
for them are more difficult. 
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Lowest Wavelength, Fixed (LWFixed):  Wavelengths are filled with lightpath requests one 
wavelength at a time starting from wavelength 0.  Wavelength k is filled starting from time t = 
0 as follows.  Choose the longest unassigned request ),,( Lba  that could start at time t and  
assign it starting from t.  Then continue filling the wavelength from time Lt +  (here, the 
addition is modulo T).    If there is no such request then continue filling the wavelength from 
time t+1.  This continues until we reach the end of ]1,0[ −T . 
 
The problem with LWFixed is it always fills wavelengths from time 0.  Thus, like FCFS and 
EDF, it creates peak bandwidth demand at time 0.  The next heuristic tends to avoid this. 
 
Lowest Wavelength, Continuous (LWCont):  This is similar to LWFixed.  It fills wavelength 
0 in the same way by starting from time 0.  However, it fills wavelength k > 0 by starting at a 
time t that depends on how wavelength 1−k  was filled.  In particular, if wavelength 1−k ’s 
last request was assigned time slots ],[ yx  then wavelength k is filled starting from 1+y  
(here, the addition is modulo T).  In this way, the assignment for wavelength k continues from 
where the assignment for wavelength 1−k  ended. 
 
3.2.  Simulations 
 
We considered two scenarios for simulations. 
 
Blocking Scenario.  The number of wavelengths W = 30, and the number of time slots T = 64.  
There is a batch of 114 lightpath requests, and all have the same time flexibilities f.   Their 
earliest start times are random and uniformly distributed over the time slots.  Their durations 
are random and uniformly distributed over time interval [1,31].  Thus, the expected duration 
of a lightpath request is 16.  The average utilization of the wavelengths is expected to be 95%, 
though the actual average utilization may be lower due to blocking. 
 
Under this scenario, we measured the next two blocking rates for the assignment heuristics.  
Call blocking is the ratio of the number of blocked lightpath requests over the total number of 
lightpath requests, which is 114.  For this measure, the blocking of a short lightpath request 
counts the same as the blocking of a long one.  The next blocking rate accounts for the 
durations of the requests.  Traffic blocking is the ratio of the work of blocked lightpath 
requests over the work of all lightpath requests. 
 
Nonblocking Scenario.  This is similar to the Blocking Scenario with the following 
differences.  First, the number of lightpath requests in a batch is 128 rather than 114.  Second, 
under this scenario, we measure the minimum number of wavelengths so that there is no 
blocking. 
 
Under each scenario, we randomly generated 100 batches of lightpath requests.  Then for each 
batch, we simulated the heuristic assignments and measured their performances.  The 
performances were averaged over the 100 instances. 
 
Figures 2 and 3 are for the Blocking Scenario.  They have the average call and traffic blocking 
rates, respectively, as a function of the time flexibility f.  As expected, FCFS and EDF have 
high blocking rates.  LWCont has about the lowest blocking rates over all flexibility times.  
Blocking rates decrease as time flexibility increases, except for LWFixed when the time 
flexibility is around 32.  Increased time flexibility allows LWFixed to put more lightpaths at 
time 0 which degrades its performance. 
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Figure 2.  Call blocking rates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  Traffic blocking rates. 

 
Figure 4 shows the simulation results for the Nonblocking Scenario.  The performance 
measure is the average minimum number of wavelengths so there is no blocking.  The value 
Cmin is  TM /  , where M is the work of the lightpath requests.  Thus, it is a lower bound on 
the minimum number of wavelengths.  Note that LWMD and LWCont require minimal 
number of wavelengths when the time flexibility is around 16, the average duration of a 
lightpath request. 
 
From these simulations, LWCont performs the best over the three performance measures. 
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4.  Conclusions 
 
We considered a single WDM link and the problem of assigning periodic lightpath services, 
which are allowed some flexibility on when they begin.  We applied a traffic characterization 
by Cruz [1] that shows a relationship between wavelength efficiency, lightpath request 
burstiness, and time flexibility.  We also studied the assignment problem for randomly 
generated lightpath requests.  Simple assignment heuristics were shown to be effective by 
simulation.  Heuristics that filled one wavelength at a time were the most efficient since their 
assignments are spread over time. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  The average number of wavelengths so there is no blocking. 

 
 
References 
 
1. R. Cruz, “A calculus for network delay, part I: network elements in isolation,” IEEE 

Transactions on Information Theory, vol. 37, no. 1, pp. 114-131, Jan. 1991. 
2. O. Gerstel, S. Kutten, R. Ramaswami, and G. Sasaki, "Worst-case analysis of dynamic 

wavelength allocation in optical networks, IEEE/ACM Transactions on Networking, vol. 
7, no 6, pp. 833-846, Dec. 1999. 

3. R. Ramaswami and G. Sasaki, ``Multiwavelength optical networks with limited 
wavelength conversion,'' IEEE/ACM Trans. Networking, vol. 6, no. 6, pp. 744-754, Dec. 
1998. 

4. X. Zhang and C. Qiao, “Scheduling all-to-all personalized connections and cost-effective 
designs in WDM rings,” IEEE/ACM Trans. Networking, vol. 7, pp. 435-445, June 1999. 

30

32

34

36

38

40

42

44

46

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60Time Flexibility

A
ve

ra
ge

 N
um

be
r o

f W
av

el
en

gt
hs

FCFS
EDF
LWMD
LWFixed
LWCont
Cmin


